Adaptive Non-singular Terminal Sliding Mode Fault-tolerant Control of Robotic Manipulators Based on Contour Error Compensation

To achieve accurate contour tracking of robotic manipulators with dynamic uncertainties, coupling and actuator faults, an adaptive non-singular terminal sliding mode control (ANTSMC) based on cross-coupling is proposed. Firstly, the singularity is eliminated completely by using a terminal sliding mo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2021-10
Hauptverfasser: Zhu Dachang, Du Baolin, Cui Aodong, Zhu Puchen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Zhu Dachang
Du Baolin
Cui Aodong
Zhu Puchen
description To achieve accurate contour tracking of robotic manipulators with dynamic uncertainties, coupling and actuator faults, an adaptive non-singular terminal sliding mode control (ANTSMC) based on cross-coupling is proposed. Firstly, the singularity is eliminated completely by using a terminal sliding mode manifold. Secondly, an adaptive tuning approach is selected for avoid the demand of the bound of system uncertainty, and the stability of the proposed control strategy is demonstrated by the sense of the finite-time stability theory. Furthermore, the cross-coupled ANTSMC law is proposed for contour tracking at the end-effectors level of robotic manipulators. Thirdly, a unified framework of cross-coupling contour compensation and reference position pre-compensation is designed by combining cross-coupling control with parabolic transition trajectory planning. Finally, numerical simulation and experimental results are shown to prove the effectiveness of the proposed control strategy.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2583231415</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2583231415</sourcerecordid><originalsourceid>FETCH-proquest_journals_25832314153</originalsourceid><addsrcrecordid>eNqNjsFqAkEQRIdAQDH-Q4Pnhd0ZV70aUXIxB_UunewoI2P3prs3x3y7Q8gH5FRU8aqoJzf2ITTVau79yE1Vb3Vd-8XSt20Yu591h72l7wjvTJUmug4ZBU5R7okwwzGnroSw5y7CDodslXGOgmSwYTLhDHyBA3-wpU_YI6W-LBiLwitq7IDpF-RBYCvCUty9j6RoienFPV8wa5z-6cTNdtvT5q3qhb-GqHa-lWI5omffroIPzbxpw_-oB4woUDY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2583231415</pqid></control><display><type>article</type><title>Adaptive Non-singular Terminal Sliding Mode Fault-tolerant Control of Robotic Manipulators Based on Contour Error Compensation</title><source>Free E- Journals</source><creator>Zhu Dachang ; Du Baolin ; Cui Aodong ; Zhu Puchen</creator><creatorcontrib>Zhu Dachang ; Du Baolin ; Cui Aodong ; Zhu Puchen</creatorcontrib><description>To achieve accurate contour tracking of robotic manipulators with dynamic uncertainties, coupling and actuator faults, an adaptive non-singular terminal sliding mode control (ANTSMC) based on cross-coupling is proposed. Firstly, the singularity is eliminated completely by using a terminal sliding mode manifold. Secondly, an adaptive tuning approach is selected for avoid the demand of the bound of system uncertainty, and the stability of the proposed control strategy is demonstrated by the sense of the finite-time stability theory. Furthermore, the cross-coupled ANTSMC law is proposed for contour tracking at the end-effectors level of robotic manipulators. Thirdly, a unified framework of cross-coupling contour compensation and reference position pre-compensation is designed by combining cross-coupling control with parabolic transition trajectory planning. Finally, numerical simulation and experimental results are shown to prove the effectiveness of the proposed control strategy.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Actuators ; Adaptive control ; Contours ; Control stability ; Cross coupling ; End effectors ; Error compensation ; Fault tolerance ; Manipulators ; Robot arms ; Robot control ; Robotics ; Sliding mode control ; Strategy ; Tracking ; Trajectory control ; Trajectory planning ; Uncertainty</subject><ispartof>arXiv.org, 2021-10</ispartof><rights>2021. This work is published under http://creativecommons.org/licenses/by-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Zhu Dachang</creatorcontrib><creatorcontrib>Du Baolin</creatorcontrib><creatorcontrib>Cui Aodong</creatorcontrib><creatorcontrib>Zhu Puchen</creatorcontrib><title>Adaptive Non-singular Terminal Sliding Mode Fault-tolerant Control of Robotic Manipulators Based on Contour Error Compensation</title><title>arXiv.org</title><description>To achieve accurate contour tracking of robotic manipulators with dynamic uncertainties, coupling and actuator faults, an adaptive non-singular terminal sliding mode control (ANTSMC) based on cross-coupling is proposed. Firstly, the singularity is eliminated completely by using a terminal sliding mode manifold. Secondly, an adaptive tuning approach is selected for avoid the demand of the bound of system uncertainty, and the stability of the proposed control strategy is demonstrated by the sense of the finite-time stability theory. Furthermore, the cross-coupled ANTSMC law is proposed for contour tracking at the end-effectors level of robotic manipulators. Thirdly, a unified framework of cross-coupling contour compensation and reference position pre-compensation is designed by combining cross-coupling control with parabolic transition trajectory planning. Finally, numerical simulation and experimental results are shown to prove the effectiveness of the proposed control strategy.</description><subject>Actuators</subject><subject>Adaptive control</subject><subject>Contours</subject><subject>Control stability</subject><subject>Cross coupling</subject><subject>End effectors</subject><subject>Error compensation</subject><subject>Fault tolerance</subject><subject>Manipulators</subject><subject>Robot arms</subject><subject>Robot control</subject><subject>Robotics</subject><subject>Sliding mode control</subject><subject>Strategy</subject><subject>Tracking</subject><subject>Trajectory control</subject><subject>Trajectory planning</subject><subject>Uncertainty</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjsFqAkEQRIdAQDH-Q4Pnhd0ZV70aUXIxB_UunewoI2P3prs3x3y7Q8gH5FRU8aqoJzf2ITTVau79yE1Vb3Vd-8XSt20Yu591h72l7wjvTJUmug4ZBU5R7okwwzGnroSw5y7CDodslXGOgmSwYTLhDHyBA3-wpU_YI6W-LBiLwitq7IDpF-RBYCvCUty9j6RoienFPV8wa5z-6cTNdtvT5q3qhb-GqHa-lWI5omffroIPzbxpw_-oB4woUDY</recordid><startdate>20211017</startdate><enddate>20211017</enddate><creator>Zhu Dachang</creator><creator>Du Baolin</creator><creator>Cui Aodong</creator><creator>Zhu Puchen</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20211017</creationdate><title>Adaptive Non-singular Terminal Sliding Mode Fault-tolerant Control of Robotic Manipulators Based on Contour Error Compensation</title><author>Zhu Dachang ; Du Baolin ; Cui Aodong ; Zhu Puchen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25832314153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Actuators</topic><topic>Adaptive control</topic><topic>Contours</topic><topic>Control stability</topic><topic>Cross coupling</topic><topic>End effectors</topic><topic>Error compensation</topic><topic>Fault tolerance</topic><topic>Manipulators</topic><topic>Robot arms</topic><topic>Robot control</topic><topic>Robotics</topic><topic>Sliding mode control</topic><topic>Strategy</topic><topic>Tracking</topic><topic>Trajectory control</topic><topic>Trajectory planning</topic><topic>Uncertainty</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhu Dachang</creatorcontrib><creatorcontrib>Du Baolin</creatorcontrib><creatorcontrib>Cui Aodong</creatorcontrib><creatorcontrib>Zhu Puchen</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu Dachang</au><au>Du Baolin</au><au>Cui Aodong</au><au>Zhu Puchen</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Adaptive Non-singular Terminal Sliding Mode Fault-tolerant Control of Robotic Manipulators Based on Contour Error Compensation</atitle><jtitle>arXiv.org</jtitle><date>2021-10-17</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>To achieve accurate contour tracking of robotic manipulators with dynamic uncertainties, coupling and actuator faults, an adaptive non-singular terminal sliding mode control (ANTSMC) based on cross-coupling is proposed. Firstly, the singularity is eliminated completely by using a terminal sliding mode manifold. Secondly, an adaptive tuning approach is selected for avoid the demand of the bound of system uncertainty, and the stability of the proposed control strategy is demonstrated by the sense of the finite-time stability theory. Furthermore, the cross-coupled ANTSMC law is proposed for contour tracking at the end-effectors level of robotic manipulators. Thirdly, a unified framework of cross-coupling contour compensation and reference position pre-compensation is designed by combining cross-coupling control with parabolic transition trajectory planning. Finally, numerical simulation and experimental results are shown to prove the effectiveness of the proposed control strategy.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2021-10
issn 2331-8422
language eng
recordid cdi_proquest_journals_2583231415
source Free E- Journals
subjects Actuators
Adaptive control
Contours
Control stability
Cross coupling
End effectors
Error compensation
Fault tolerance
Manipulators
Robot arms
Robot control
Robotics
Sliding mode control
Strategy
Tracking
Trajectory control
Trajectory planning
Uncertainty
title Adaptive Non-singular Terminal Sliding Mode Fault-tolerant Control of Robotic Manipulators Based on Contour Error Compensation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T06%3A29%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Adaptive%20Non-singular%20Terminal%20Sliding%20Mode%20Fault-tolerant%20Control%20of%20Robotic%20Manipulators%20Based%20on%20Contour%20Error%20Compensation&rft.jtitle=arXiv.org&rft.au=Zhu%20Dachang&rft.date=2021-10-17&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2583231415%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2583231415&rft_id=info:pmid/&rfr_iscdi=true