Adaptive Non-singular Terminal Sliding Mode Fault-tolerant Control of Robotic Manipulators Based on Contour Error Compensation
To achieve accurate contour tracking of robotic manipulators with dynamic uncertainties, coupling and actuator faults, an adaptive non-singular terminal sliding mode control (ANTSMC) based on cross-coupling is proposed. Firstly, the singularity is eliminated completely by using a terminal sliding mo...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2021-10 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Zhu Dachang Du Baolin Cui Aodong Zhu Puchen |
description | To achieve accurate contour tracking of robotic manipulators with dynamic uncertainties, coupling and actuator faults, an adaptive non-singular terminal sliding mode control (ANTSMC) based on cross-coupling is proposed. Firstly, the singularity is eliminated completely by using a terminal sliding mode manifold. Secondly, an adaptive tuning approach is selected for avoid the demand of the bound of system uncertainty, and the stability of the proposed control strategy is demonstrated by the sense of the finite-time stability theory. Furthermore, the cross-coupled ANTSMC law is proposed for contour tracking at the end-effectors level of robotic manipulators. Thirdly, a unified framework of cross-coupling contour compensation and reference position pre-compensation is designed by combining cross-coupling control with parabolic transition trajectory planning. Finally, numerical simulation and experimental results are shown to prove the effectiveness of the proposed control strategy. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2583231415</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2583231415</sourcerecordid><originalsourceid>FETCH-proquest_journals_25832314153</originalsourceid><addsrcrecordid>eNqNjsFqAkEQRIdAQDH-Q4Pnhd0ZV70aUXIxB_UunewoI2P3prs3x3y7Q8gH5FRU8aqoJzf2ITTVau79yE1Vb3Vd-8XSt20Yu591h72l7wjvTJUmug4ZBU5R7okwwzGnroSw5y7CDodslXGOgmSwYTLhDHyBA3-wpU_YI6W-LBiLwitq7IDpF-RBYCvCUty9j6RoienFPV8wa5z-6cTNdtvT5q3qhb-GqHa-lWI5omffroIPzbxpw_-oB4woUDY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2583231415</pqid></control><display><type>article</type><title>Adaptive Non-singular Terminal Sliding Mode Fault-tolerant Control of Robotic Manipulators Based on Contour Error Compensation</title><source>Free E- Journals</source><creator>Zhu Dachang ; Du Baolin ; Cui Aodong ; Zhu Puchen</creator><creatorcontrib>Zhu Dachang ; Du Baolin ; Cui Aodong ; Zhu Puchen</creatorcontrib><description>To achieve accurate contour tracking of robotic manipulators with dynamic uncertainties, coupling and actuator faults, an adaptive non-singular terminal sliding mode control (ANTSMC) based on cross-coupling is proposed. Firstly, the singularity is eliminated completely by using a terminal sliding mode manifold. Secondly, an adaptive tuning approach is selected for avoid the demand of the bound of system uncertainty, and the stability of the proposed control strategy is demonstrated by the sense of the finite-time stability theory. Furthermore, the cross-coupled ANTSMC law is proposed for contour tracking at the end-effectors level of robotic manipulators. Thirdly, a unified framework of cross-coupling contour compensation and reference position pre-compensation is designed by combining cross-coupling control with parabolic transition trajectory planning. Finally, numerical simulation and experimental results are shown to prove the effectiveness of the proposed control strategy.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Actuators ; Adaptive control ; Contours ; Control stability ; Cross coupling ; End effectors ; Error compensation ; Fault tolerance ; Manipulators ; Robot arms ; Robot control ; Robotics ; Sliding mode control ; Strategy ; Tracking ; Trajectory control ; Trajectory planning ; Uncertainty</subject><ispartof>arXiv.org, 2021-10</ispartof><rights>2021. This work is published under http://creativecommons.org/licenses/by-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Zhu Dachang</creatorcontrib><creatorcontrib>Du Baolin</creatorcontrib><creatorcontrib>Cui Aodong</creatorcontrib><creatorcontrib>Zhu Puchen</creatorcontrib><title>Adaptive Non-singular Terminal Sliding Mode Fault-tolerant Control of Robotic Manipulators Based on Contour Error Compensation</title><title>arXiv.org</title><description>To achieve accurate contour tracking of robotic manipulators with dynamic uncertainties, coupling and actuator faults, an adaptive non-singular terminal sliding mode control (ANTSMC) based on cross-coupling is proposed. Firstly, the singularity is eliminated completely by using a terminal sliding mode manifold. Secondly, an adaptive tuning approach is selected for avoid the demand of the bound of system uncertainty, and the stability of the proposed control strategy is demonstrated by the sense of the finite-time stability theory. Furthermore, the cross-coupled ANTSMC law is proposed for contour tracking at the end-effectors level of robotic manipulators. Thirdly, a unified framework of cross-coupling contour compensation and reference position pre-compensation is designed by combining cross-coupling control with parabolic transition trajectory planning. Finally, numerical simulation and experimental results are shown to prove the effectiveness of the proposed control strategy.</description><subject>Actuators</subject><subject>Adaptive control</subject><subject>Contours</subject><subject>Control stability</subject><subject>Cross coupling</subject><subject>End effectors</subject><subject>Error compensation</subject><subject>Fault tolerance</subject><subject>Manipulators</subject><subject>Robot arms</subject><subject>Robot control</subject><subject>Robotics</subject><subject>Sliding mode control</subject><subject>Strategy</subject><subject>Tracking</subject><subject>Trajectory control</subject><subject>Trajectory planning</subject><subject>Uncertainty</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjsFqAkEQRIdAQDH-Q4Pnhd0ZV70aUXIxB_UunewoI2P3prs3x3y7Q8gH5FRU8aqoJzf2ITTVau79yE1Vb3Vd-8XSt20Yu591h72l7wjvTJUmug4ZBU5R7okwwzGnroSw5y7CDodslXGOgmSwYTLhDHyBA3-wpU_YI6W-LBiLwitq7IDpF-RBYCvCUty9j6RoienFPV8wa5z-6cTNdtvT5q3qhb-GqHa-lWI5omffroIPzbxpw_-oB4woUDY</recordid><startdate>20211017</startdate><enddate>20211017</enddate><creator>Zhu Dachang</creator><creator>Du Baolin</creator><creator>Cui Aodong</creator><creator>Zhu Puchen</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20211017</creationdate><title>Adaptive Non-singular Terminal Sliding Mode Fault-tolerant Control of Robotic Manipulators Based on Contour Error Compensation</title><author>Zhu Dachang ; Du Baolin ; Cui Aodong ; Zhu Puchen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25832314153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Actuators</topic><topic>Adaptive control</topic><topic>Contours</topic><topic>Control stability</topic><topic>Cross coupling</topic><topic>End effectors</topic><topic>Error compensation</topic><topic>Fault tolerance</topic><topic>Manipulators</topic><topic>Robot arms</topic><topic>Robot control</topic><topic>Robotics</topic><topic>Sliding mode control</topic><topic>Strategy</topic><topic>Tracking</topic><topic>Trajectory control</topic><topic>Trajectory planning</topic><topic>Uncertainty</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhu Dachang</creatorcontrib><creatorcontrib>Du Baolin</creatorcontrib><creatorcontrib>Cui Aodong</creatorcontrib><creatorcontrib>Zhu Puchen</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu Dachang</au><au>Du Baolin</au><au>Cui Aodong</au><au>Zhu Puchen</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Adaptive Non-singular Terminal Sliding Mode Fault-tolerant Control of Robotic Manipulators Based on Contour Error Compensation</atitle><jtitle>arXiv.org</jtitle><date>2021-10-17</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>To achieve accurate contour tracking of robotic manipulators with dynamic uncertainties, coupling and actuator faults, an adaptive non-singular terminal sliding mode control (ANTSMC) based on cross-coupling is proposed. Firstly, the singularity is eliminated completely by using a terminal sliding mode manifold. Secondly, an adaptive tuning approach is selected for avoid the demand of the bound of system uncertainty, and the stability of the proposed control strategy is demonstrated by the sense of the finite-time stability theory. Furthermore, the cross-coupled ANTSMC law is proposed for contour tracking at the end-effectors level of robotic manipulators. Thirdly, a unified framework of cross-coupling contour compensation and reference position pre-compensation is designed by combining cross-coupling control with parabolic transition trajectory planning. Finally, numerical simulation and experimental results are shown to prove the effectiveness of the proposed control strategy.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2021-10 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2583231415 |
source | Free E- Journals |
subjects | Actuators Adaptive control Contours Control stability Cross coupling End effectors Error compensation Fault tolerance Manipulators Robot arms Robot control Robotics Sliding mode control Strategy Tracking Trajectory control Trajectory planning Uncertainty |
title | Adaptive Non-singular Terminal Sliding Mode Fault-tolerant Control of Robotic Manipulators Based on Contour Error Compensation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T06%3A29%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Adaptive%20Non-singular%20Terminal%20Sliding%20Mode%20Fault-tolerant%20Control%20of%20Robotic%20Manipulators%20Based%20on%20Contour%20Error%20Compensation&rft.jtitle=arXiv.org&rft.au=Zhu%20Dachang&rft.date=2021-10-17&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2583231415%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2583231415&rft_id=info:pmid/&rfr_iscdi=true |