Molecular Dynamics Simulation of Sliding Friction Between Crystalline Cotton Fiber and Cr

The effects of load and temperature on the friction between crystalline cotton cellulose and chromium in vacuum were investigated utilizing ReaxFF molecular dynamics. Simulation results indicate that a new chemical bond, Cr=O bond, is formed between the sliding friction interface. In the initial sta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Tribology letters 2021-12, Vol.69 (4), Article 153
Hauptverfasser: Yan, Zhe, Jiang, Kaixiang, Fang, Wenjuan, Cao, Hui, Zhang, Youqiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page
container_title Tribology letters
container_volume 69
creator Yan, Zhe
Jiang, Kaixiang
Fang, Wenjuan
Cao, Hui
Zhang, Youqiang
description The effects of load and temperature on the friction between crystalline cotton cellulose and chromium in vacuum were investigated utilizing ReaxFF molecular dynamics. Simulation results indicate that a new chemical bond, Cr=O bond, is formed between the sliding friction interface. In the initial stage, the friction force is determined by the number of atoms in contact with the interface. Then, the friction force depends on the number of atoms of cellulose nested in the chromium matrix at the contact interface. It is positively correlated with load and temperature. Under low load, with the formation of the Cr=O bond, the surface structure of the chromium matrix is damaged. With the increase of load, more Cr=O bonds are formed between the contact interfaces, which leads to more profound damage to the surface structure of the chromium layer. This work systematically introduces the influence mechanism of load and temperature on the friction behavior of crystalline cotton cellulose with chromium, thus providing a new perspective on the study of frictional wear mechanism between cotton cellulose and metal.
doi_str_mv 10.1007/s11249-021-01533-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2583229853</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2583229853</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-83855cce122f2949d389e981dbba00bbc1b6086bbc5c56b419d9dff7e01bc1d53</originalsourceid><addsrcrecordid>eNp9kEFLAzEQhYMoWKt_wFPA82omabrJUVerQsVD9eApZJNsSdlma7JF9t8bu4I3T_N4b94MfAhdArkGQsqbBEBnsiAUCgKcsUIcoQnwkhW0BDjOmtBsCsFO0VlKG0JyTfAJ-njpWmf2rY74fgh6603CK7_NRu-7gLsGr1pvfVjjRfTm4N25_su5gKs4pF63rQ8OV13f52jhaxexDjaH5-ik0W1yF79zit4XD2_VU7F8fXyubpeFYSD7QjDBuTEOKG2onEnLhHRSgK1rTUhdG6jnRMyz4IbP6xlIK23TlI5AzixnU3Q13t3F7nPvUq823T6G_FJRLhilUmQgU0THLRO7lKJr1C76rY6DAqJ-EKoRocoI1QGhErnExlLKy2Ht4t_pf1rfsil0Tg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2583229853</pqid></control><display><type>article</type><title>Molecular Dynamics Simulation of Sliding Friction Between Crystalline Cotton Fiber and Cr</title><source>SpringerLink Journals - AutoHoldings</source><creator>Yan, Zhe ; Jiang, Kaixiang ; Fang, Wenjuan ; Cao, Hui ; Zhang, Youqiang</creator><creatorcontrib>Yan, Zhe ; Jiang, Kaixiang ; Fang, Wenjuan ; Cao, Hui ; Zhang, Youqiang</creatorcontrib><description>The effects of load and temperature on the friction between crystalline cotton cellulose and chromium in vacuum were investigated utilizing ReaxFF molecular dynamics. Simulation results indicate that a new chemical bond, Cr=O bond, is formed between the sliding friction interface. In the initial stage, the friction force is determined by the number of atoms in contact with the interface. Then, the friction force depends on the number of atoms of cellulose nested in the chromium matrix at the contact interface. It is positively correlated with load and temperature. Under low load, with the formation of the Cr=O bond, the surface structure of the chromium matrix is damaged. With the increase of load, more Cr=O bonds are formed between the contact interfaces, which leads to more profound damage to the surface structure of the chromium layer. This work systematically introduces the influence mechanism of load and temperature on the friction behavior of crystalline cotton cellulose with chromium, thus providing a new perspective on the study of frictional wear mechanism between cotton cellulose and metal.</description><identifier>ISSN: 1023-8883</identifier><identifier>EISSN: 1573-2711</identifier><identifier>DOI: 10.1007/s11249-021-01533-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Atomic properties ; Cellulose ; Chemical bonds ; Chemistry and Materials Science ; Chromium ; Corrosion and Coatings ; Cotton ; Cotton fibers ; Crystal structure ; Crystallinity ; Damage ; Frictional wear ; Interfaces ; Materials Science ; Molecular dynamics ; Nanotechnology ; Original Paper ; Physical Chemistry ; Sliding friction ; Surface structure ; Surfaces and Interfaces ; Theoretical and Applied Mechanics ; Thin Films ; Tribology ; Wear mechanisms</subject><ispartof>Tribology letters, 2021-12, Vol.69 (4), Article 153</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-83855cce122f2949d389e981dbba00bbc1b6086bbc5c56b419d9dff7e01bc1d53</citedby><cites>FETCH-LOGICAL-c319t-83855cce122f2949d389e981dbba00bbc1b6086bbc5c56b419d9dff7e01bc1d53</cites><orcidid>0000-0002-4448-1518</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11249-021-01533-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11249-021-01533-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Yan, Zhe</creatorcontrib><creatorcontrib>Jiang, Kaixiang</creatorcontrib><creatorcontrib>Fang, Wenjuan</creatorcontrib><creatorcontrib>Cao, Hui</creatorcontrib><creatorcontrib>Zhang, Youqiang</creatorcontrib><title>Molecular Dynamics Simulation of Sliding Friction Between Crystalline Cotton Fiber and Cr</title><title>Tribology letters</title><addtitle>Tribol Lett</addtitle><description>The effects of load and temperature on the friction between crystalline cotton cellulose and chromium in vacuum were investigated utilizing ReaxFF molecular dynamics. Simulation results indicate that a new chemical bond, Cr=O bond, is formed between the sliding friction interface. In the initial stage, the friction force is determined by the number of atoms in contact with the interface. Then, the friction force depends on the number of atoms of cellulose nested in the chromium matrix at the contact interface. It is positively correlated with load and temperature. Under low load, with the formation of the Cr=O bond, the surface structure of the chromium matrix is damaged. With the increase of load, more Cr=O bonds are formed between the contact interfaces, which leads to more profound damage to the surface structure of the chromium layer. This work systematically introduces the influence mechanism of load and temperature on the friction behavior of crystalline cotton cellulose with chromium, thus providing a new perspective on the study of frictional wear mechanism between cotton cellulose and metal.</description><subject>Atomic properties</subject><subject>Cellulose</subject><subject>Chemical bonds</subject><subject>Chemistry and Materials Science</subject><subject>Chromium</subject><subject>Corrosion and Coatings</subject><subject>Cotton</subject><subject>Cotton fibers</subject><subject>Crystal structure</subject><subject>Crystallinity</subject><subject>Damage</subject><subject>Frictional wear</subject><subject>Interfaces</subject><subject>Materials Science</subject><subject>Molecular dynamics</subject><subject>Nanotechnology</subject><subject>Original Paper</subject><subject>Physical Chemistry</subject><subject>Sliding friction</subject><subject>Surface structure</subject><subject>Surfaces and Interfaces</subject><subject>Theoretical and Applied Mechanics</subject><subject>Thin Films</subject><subject>Tribology</subject><subject>Wear mechanisms</subject><issn>1023-8883</issn><issn>1573-2711</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kEFLAzEQhYMoWKt_wFPA82omabrJUVerQsVD9eApZJNsSdlma7JF9t8bu4I3T_N4b94MfAhdArkGQsqbBEBnsiAUCgKcsUIcoQnwkhW0BDjOmtBsCsFO0VlKG0JyTfAJ-njpWmf2rY74fgh6603CK7_NRu-7gLsGr1pvfVjjRfTm4N25_su5gKs4pF63rQ8OV13f52jhaxexDjaH5-ik0W1yF79zit4XD2_VU7F8fXyubpeFYSD7QjDBuTEOKG2onEnLhHRSgK1rTUhdG6jnRMyz4IbP6xlIK23TlI5AzixnU3Q13t3F7nPvUq823T6G_FJRLhilUmQgU0THLRO7lKJr1C76rY6DAqJ-EKoRocoI1QGhErnExlLKy2Ht4t_pf1rfsil0Tg</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Yan, Zhe</creator><creator>Jiang, Kaixiang</creator><creator>Fang, Wenjuan</creator><creator>Cao, Hui</creator><creator>Zhang, Youqiang</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-4448-1518</orcidid></search><sort><creationdate>20211201</creationdate><title>Molecular Dynamics Simulation of Sliding Friction Between Crystalline Cotton Fiber and Cr</title><author>Yan, Zhe ; Jiang, Kaixiang ; Fang, Wenjuan ; Cao, Hui ; Zhang, Youqiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-83855cce122f2949d389e981dbba00bbc1b6086bbc5c56b419d9dff7e01bc1d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Atomic properties</topic><topic>Cellulose</topic><topic>Chemical bonds</topic><topic>Chemistry and Materials Science</topic><topic>Chromium</topic><topic>Corrosion and Coatings</topic><topic>Cotton</topic><topic>Cotton fibers</topic><topic>Crystal structure</topic><topic>Crystallinity</topic><topic>Damage</topic><topic>Frictional wear</topic><topic>Interfaces</topic><topic>Materials Science</topic><topic>Molecular dynamics</topic><topic>Nanotechnology</topic><topic>Original Paper</topic><topic>Physical Chemistry</topic><topic>Sliding friction</topic><topic>Surface structure</topic><topic>Surfaces and Interfaces</topic><topic>Theoretical and Applied Mechanics</topic><topic>Thin Films</topic><topic>Tribology</topic><topic>Wear mechanisms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan, Zhe</creatorcontrib><creatorcontrib>Jiang, Kaixiang</creatorcontrib><creatorcontrib>Fang, Wenjuan</creatorcontrib><creatorcontrib>Cao, Hui</creatorcontrib><creatorcontrib>Zhang, Youqiang</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Tribology letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yan, Zhe</au><au>Jiang, Kaixiang</au><au>Fang, Wenjuan</au><au>Cao, Hui</au><au>Zhang, Youqiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular Dynamics Simulation of Sliding Friction Between Crystalline Cotton Fiber and Cr</atitle><jtitle>Tribology letters</jtitle><stitle>Tribol Lett</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>69</volume><issue>4</issue><artnum>153</artnum><issn>1023-8883</issn><eissn>1573-2711</eissn><abstract>The effects of load and temperature on the friction between crystalline cotton cellulose and chromium in vacuum were investigated utilizing ReaxFF molecular dynamics. Simulation results indicate that a new chemical bond, Cr=O bond, is formed between the sliding friction interface. In the initial stage, the friction force is determined by the number of atoms in contact with the interface. Then, the friction force depends on the number of atoms of cellulose nested in the chromium matrix at the contact interface. It is positively correlated with load and temperature. Under low load, with the formation of the Cr=O bond, the surface structure of the chromium matrix is damaged. With the increase of load, more Cr=O bonds are formed between the contact interfaces, which leads to more profound damage to the surface structure of the chromium layer. This work systematically introduces the influence mechanism of load and temperature on the friction behavior of crystalline cotton cellulose with chromium, thus providing a new perspective on the study of frictional wear mechanism between cotton cellulose and metal.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11249-021-01533-8</doi><orcidid>https://orcid.org/0000-0002-4448-1518</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1023-8883
ispartof Tribology letters, 2021-12, Vol.69 (4), Article 153
issn 1023-8883
1573-2711
language eng
recordid cdi_proquest_journals_2583229853
source SpringerLink Journals - AutoHoldings
subjects Atomic properties
Cellulose
Chemical bonds
Chemistry and Materials Science
Chromium
Corrosion and Coatings
Cotton
Cotton fibers
Crystal structure
Crystallinity
Damage
Frictional wear
Interfaces
Materials Science
Molecular dynamics
Nanotechnology
Original Paper
Physical Chemistry
Sliding friction
Surface structure
Surfaces and Interfaces
Theoretical and Applied Mechanics
Thin Films
Tribology
Wear mechanisms
title Molecular Dynamics Simulation of Sliding Friction Between Crystalline Cotton Fiber and Cr
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T21%3A57%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20Dynamics%20Simulation%20of%20Sliding%20Friction%20Between%20Crystalline%20Cotton%20Fiber%20and%20Cr&rft.jtitle=Tribology%20letters&rft.au=Yan,%20Zhe&rft.date=2021-12-01&rft.volume=69&rft.issue=4&rft.artnum=153&rft.issn=1023-8883&rft.eissn=1573-2711&rft_id=info:doi/10.1007/s11249-021-01533-8&rft_dat=%3Cproquest_cross%3E2583229853%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2583229853&rft_id=info:pmid/&rfr_iscdi=true