Facet controlled anisotropic magnons in Y3Fe5O12 thin films

Directional specific control on the generation and propagation of magnons is essential for designing future magnon-based logic and memory devices for low power computing. The epitaxy of the ferromagnetic thin film is expected to facilitate anisotropic linewidths, which depend on the crystal cut and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2021-10, Vol.119 (16)
Hauptverfasser: Medwal, Rohit, Deka, Angshuman, Vas, Joseph Vimal, Duchamp, Martial, Asada, Hironori, Gupta, Surbhi, Fukuma, Yasuhiro, Rawat, Rajdeep Singh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 16
container_start_page
container_title Applied physics letters
container_volume 119
creator Medwal, Rohit
Deka, Angshuman
Vas, Joseph Vimal
Duchamp, Martial
Asada, Hironori
Gupta, Surbhi
Fukuma, Yasuhiro
Rawat, Rajdeep Singh
description Directional specific control on the generation and propagation of magnons is essential for designing future magnon-based logic and memory devices for low power computing. The epitaxy of the ferromagnetic thin film is expected to facilitate anisotropic linewidths, which depend on the crystal cut and the orientation of the thin film. Here, we have shown the growth-induced magneto-crystalline anisotropy in 40 nm epitaxial yttrium iron garnet (YIG) thin films, which facilitate cubic and uniaxial in-plane anisotropy in the resonance field and linewidth using ferromagnetic resonance measurements. The growth-induced cubic and non-cubic anisotropy in epitaxial YIG thin films are explained using the short-range ordering of the Fe3+ cation pairs in octahedral and tetrahedral sublattices with respect to the crystal growth directions. This site-preferred directional anisotropy enables an anisotropic magnon–magnon interaction and opens an avenue to precisely control the propagation of magnonic current for spin-transfer logics using YIG-based magnonic technology.
doi_str_mv 10.1063/5.0064653
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2583197042</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2583197042</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-a83bb974e18a7bcebf80e4374decde824a3dd9b3d15cf6ed8421cf784c5bced53</originalsourceid><addsrcrecordid>eNp90M1KAzEUBeAgCtbqwjcYcKUwNZkkkwyupFgVCt3owlXI5EdTpsmYpIJvb6RFF4Kry4GPc-EAcI7gDMEWX9MZhC1pKT4AEwQZqzFC_BBMIIS4bjuKjsFJSusSaYPxBNwspDK5UsHnGIbB6Ep6l0IJo1PVRr764FPlfPWCF4auUFPlt5KsGzbpFBxZOSRztr9T8Ly4e5o_1MvV_eP8dlkrAttcS477vmPEIC5Zr0xvOTQEM6KN0oY3RGKtux5rRJVtjeakQcoyThQtWlM8BRe73jGG961JWazDNvryUjSUY9QxSJqiLndKxZBSNFaM0W1k_BQIiu9tBBX7bYq92tmkXJbZBf-DP0L8hWLU9j_8t_kLRIdxqw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2583197042</pqid></control><display><type>article</type><title>Facet controlled anisotropic magnons in Y3Fe5O12 thin films</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Medwal, Rohit ; Deka, Angshuman ; Vas, Joseph Vimal ; Duchamp, Martial ; Asada, Hironori ; Gupta, Surbhi ; Fukuma, Yasuhiro ; Rawat, Rajdeep Singh</creator><creatorcontrib>Medwal, Rohit ; Deka, Angshuman ; Vas, Joseph Vimal ; Duchamp, Martial ; Asada, Hironori ; Gupta, Surbhi ; Fukuma, Yasuhiro ; Rawat, Rajdeep Singh</creatorcontrib><description>Directional specific control on the generation and propagation of magnons is essential for designing future magnon-based logic and memory devices for low power computing. The epitaxy of the ferromagnetic thin film is expected to facilitate anisotropic linewidths, which depend on the crystal cut and the orientation of the thin film. Here, we have shown the growth-induced magneto-crystalline anisotropy in 40 nm epitaxial yttrium iron garnet (YIG) thin films, which facilitate cubic and uniaxial in-plane anisotropy in the resonance field and linewidth using ferromagnetic resonance measurements. The growth-induced cubic and non-cubic anisotropy in epitaxial YIG thin films are explained using the short-range ordering of the Fe3+ cation pairs in octahedral and tetrahedral sublattices with respect to the crystal growth directions. This site-preferred directional anisotropy enables an anisotropic magnon–magnon interaction and opens an avenue to precisely control the propagation of magnonic current for spin-transfer logics using YIG-based magnonic technology.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/5.0064653</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Anisotropy ; Applied physics ; Crystal growth ; Crystal structure ; Crystals ; Epitaxial growth ; Ferromagnetic materials ; Ferromagnetic resonance ; Magnons ; Memory devices ; Propagation ; Thin films ; Yttrium ; Yttrium-iron garnet</subject><ispartof>Applied physics letters, 2021-10, Vol.119 (16)</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-a83bb974e18a7bcebf80e4374decde824a3dd9b3d15cf6ed8421cf784c5bced53</citedby><cites>FETCH-LOGICAL-c406t-a83bb974e18a7bcebf80e4374decde824a3dd9b3d15cf6ed8421cf784c5bced53</cites><orcidid>0000-0002-3161-2486 ; 0000-0002-2826-7888 ; 0000-0003-0648-2592 ; 0000-0002-5443-4694</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/5.0064653$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76384</link.rule.ids></links><search><creatorcontrib>Medwal, Rohit</creatorcontrib><creatorcontrib>Deka, Angshuman</creatorcontrib><creatorcontrib>Vas, Joseph Vimal</creatorcontrib><creatorcontrib>Duchamp, Martial</creatorcontrib><creatorcontrib>Asada, Hironori</creatorcontrib><creatorcontrib>Gupta, Surbhi</creatorcontrib><creatorcontrib>Fukuma, Yasuhiro</creatorcontrib><creatorcontrib>Rawat, Rajdeep Singh</creatorcontrib><title>Facet controlled anisotropic magnons in Y3Fe5O12 thin films</title><title>Applied physics letters</title><description>Directional specific control on the generation and propagation of magnons is essential for designing future magnon-based logic and memory devices for low power computing. The epitaxy of the ferromagnetic thin film is expected to facilitate anisotropic linewidths, which depend on the crystal cut and the orientation of the thin film. Here, we have shown the growth-induced magneto-crystalline anisotropy in 40 nm epitaxial yttrium iron garnet (YIG) thin films, which facilitate cubic and uniaxial in-plane anisotropy in the resonance field and linewidth using ferromagnetic resonance measurements. The growth-induced cubic and non-cubic anisotropy in epitaxial YIG thin films are explained using the short-range ordering of the Fe3+ cation pairs in octahedral and tetrahedral sublattices with respect to the crystal growth directions. This site-preferred directional anisotropy enables an anisotropic magnon–magnon interaction and opens an avenue to precisely control the propagation of magnonic current for spin-transfer logics using YIG-based magnonic technology.</description><subject>Anisotropy</subject><subject>Applied physics</subject><subject>Crystal growth</subject><subject>Crystal structure</subject><subject>Crystals</subject><subject>Epitaxial growth</subject><subject>Ferromagnetic materials</subject><subject>Ferromagnetic resonance</subject><subject>Magnons</subject><subject>Memory devices</subject><subject>Propagation</subject><subject>Thin films</subject><subject>Yttrium</subject><subject>Yttrium-iron garnet</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp90M1KAzEUBeAgCtbqwjcYcKUwNZkkkwyupFgVCt3owlXI5EdTpsmYpIJvb6RFF4Kry4GPc-EAcI7gDMEWX9MZhC1pKT4AEwQZqzFC_BBMIIS4bjuKjsFJSusSaYPxBNwspDK5UsHnGIbB6Ep6l0IJo1PVRr764FPlfPWCF4auUFPlt5KsGzbpFBxZOSRztr9T8Ly4e5o_1MvV_eP8dlkrAttcS477vmPEIC5Zr0xvOTQEM6KN0oY3RGKtux5rRJVtjeakQcoyThQtWlM8BRe73jGG961JWazDNvryUjSUY9QxSJqiLndKxZBSNFaM0W1k_BQIiu9tBBX7bYq92tmkXJbZBf-DP0L8hWLU9j_8t_kLRIdxqw</recordid><startdate>20211018</startdate><enddate>20211018</enddate><creator>Medwal, Rohit</creator><creator>Deka, Angshuman</creator><creator>Vas, Joseph Vimal</creator><creator>Duchamp, Martial</creator><creator>Asada, Hironori</creator><creator>Gupta, Surbhi</creator><creator>Fukuma, Yasuhiro</creator><creator>Rawat, Rajdeep Singh</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3161-2486</orcidid><orcidid>https://orcid.org/0000-0002-2826-7888</orcidid><orcidid>https://orcid.org/0000-0003-0648-2592</orcidid><orcidid>https://orcid.org/0000-0002-5443-4694</orcidid></search><sort><creationdate>20211018</creationdate><title>Facet controlled anisotropic magnons in Y3Fe5O12 thin films</title><author>Medwal, Rohit ; Deka, Angshuman ; Vas, Joseph Vimal ; Duchamp, Martial ; Asada, Hironori ; Gupta, Surbhi ; Fukuma, Yasuhiro ; Rawat, Rajdeep Singh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-a83bb974e18a7bcebf80e4374decde824a3dd9b3d15cf6ed8421cf784c5bced53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Anisotropy</topic><topic>Applied physics</topic><topic>Crystal growth</topic><topic>Crystal structure</topic><topic>Crystals</topic><topic>Epitaxial growth</topic><topic>Ferromagnetic materials</topic><topic>Ferromagnetic resonance</topic><topic>Magnons</topic><topic>Memory devices</topic><topic>Propagation</topic><topic>Thin films</topic><topic>Yttrium</topic><topic>Yttrium-iron garnet</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Medwal, Rohit</creatorcontrib><creatorcontrib>Deka, Angshuman</creatorcontrib><creatorcontrib>Vas, Joseph Vimal</creatorcontrib><creatorcontrib>Duchamp, Martial</creatorcontrib><creatorcontrib>Asada, Hironori</creatorcontrib><creatorcontrib>Gupta, Surbhi</creatorcontrib><creatorcontrib>Fukuma, Yasuhiro</creatorcontrib><creatorcontrib>Rawat, Rajdeep Singh</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Medwal, Rohit</au><au>Deka, Angshuman</au><au>Vas, Joseph Vimal</au><au>Duchamp, Martial</au><au>Asada, Hironori</au><au>Gupta, Surbhi</au><au>Fukuma, Yasuhiro</au><au>Rawat, Rajdeep Singh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Facet controlled anisotropic magnons in Y3Fe5O12 thin films</atitle><jtitle>Applied physics letters</jtitle><date>2021-10-18</date><risdate>2021</risdate><volume>119</volume><issue>16</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>Directional specific control on the generation and propagation of magnons is essential for designing future magnon-based logic and memory devices for low power computing. The epitaxy of the ferromagnetic thin film is expected to facilitate anisotropic linewidths, which depend on the crystal cut and the orientation of the thin film. Here, we have shown the growth-induced magneto-crystalline anisotropy in 40 nm epitaxial yttrium iron garnet (YIG) thin films, which facilitate cubic and uniaxial in-plane anisotropy in the resonance field and linewidth using ferromagnetic resonance measurements. The growth-induced cubic and non-cubic anisotropy in epitaxial YIG thin films are explained using the short-range ordering of the Fe3+ cation pairs in octahedral and tetrahedral sublattices with respect to the crystal growth directions. This site-preferred directional anisotropy enables an anisotropic magnon–magnon interaction and opens an avenue to precisely control the propagation of magnonic current for spin-transfer logics using YIG-based magnonic technology.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0064653</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-3161-2486</orcidid><orcidid>https://orcid.org/0000-0002-2826-7888</orcidid><orcidid>https://orcid.org/0000-0003-0648-2592</orcidid><orcidid>https://orcid.org/0000-0002-5443-4694</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2021-10, Vol.119 (16)
issn 0003-6951
1077-3118
language eng
recordid cdi_proquest_journals_2583197042
source AIP Journals Complete; Alma/SFX Local Collection
subjects Anisotropy
Applied physics
Crystal growth
Crystal structure
Crystals
Epitaxial growth
Ferromagnetic materials
Ferromagnetic resonance
Magnons
Memory devices
Propagation
Thin films
Yttrium
Yttrium-iron garnet
title Facet controlled anisotropic magnons in Y3Fe5O12 thin films
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T08%3A02%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Facet%20controlled%20anisotropic%20magnons%20in%20Y3Fe5O12%20thin%20films&rft.jtitle=Applied%20physics%20letters&rft.au=Medwal,%20Rohit&rft.date=2021-10-18&rft.volume=119&rft.issue=16&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/5.0064653&rft_dat=%3Cproquest_cross%3E2583197042%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2583197042&rft_id=info:pmid/&rfr_iscdi=true