Facet controlled anisotropic magnons in Y3Fe5O12 thin films
Directional specific control on the generation and propagation of magnons is essential for designing future magnon-based logic and memory devices for low power computing. The epitaxy of the ferromagnetic thin film is expected to facilitate anisotropic linewidths, which depend on the crystal cut and...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2021-10, Vol.119 (16) |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 16 |
container_start_page | |
container_title | Applied physics letters |
container_volume | 119 |
creator | Medwal, Rohit Deka, Angshuman Vas, Joseph Vimal Duchamp, Martial Asada, Hironori Gupta, Surbhi Fukuma, Yasuhiro Rawat, Rajdeep Singh |
description | Directional specific control on the generation and propagation of magnons is essential for designing future magnon-based logic and memory devices for low power computing. The epitaxy of the ferromagnetic thin film is expected to facilitate anisotropic linewidths, which depend on the crystal cut and the orientation of the thin film. Here, we have shown the growth-induced magneto-crystalline anisotropy in 40 nm epitaxial yttrium iron garnet (YIG) thin films, which facilitate cubic and uniaxial in-plane anisotropy in the resonance field and linewidth using ferromagnetic resonance measurements. The growth-induced cubic and non-cubic anisotropy in epitaxial YIG thin films are explained using the short-range ordering of the Fe3+ cation pairs in octahedral and tetrahedral sublattices with respect to the crystal growth directions. This site-preferred directional anisotropy enables an anisotropic magnon–magnon interaction and opens an avenue to precisely control the propagation of magnonic current for spin-transfer logics using YIG-based magnonic technology. |
doi_str_mv | 10.1063/5.0064653 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2583197042</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2583197042</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-a83bb974e18a7bcebf80e4374decde824a3dd9b3d15cf6ed8421cf784c5bced53</originalsourceid><addsrcrecordid>eNp90M1KAzEUBeAgCtbqwjcYcKUwNZkkkwyupFgVCt3owlXI5EdTpsmYpIJvb6RFF4Kry4GPc-EAcI7gDMEWX9MZhC1pKT4AEwQZqzFC_BBMIIS4bjuKjsFJSusSaYPxBNwspDK5UsHnGIbB6Ep6l0IJo1PVRr764FPlfPWCF4auUFPlt5KsGzbpFBxZOSRztr9T8Ly4e5o_1MvV_eP8dlkrAttcS477vmPEIC5Zr0xvOTQEM6KN0oY3RGKtux5rRJVtjeakQcoyThQtWlM8BRe73jGG961JWazDNvryUjSUY9QxSJqiLndKxZBSNFaM0W1k_BQIiu9tBBX7bYq92tmkXJbZBf-DP0L8hWLU9j_8t_kLRIdxqw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2583197042</pqid></control><display><type>article</type><title>Facet controlled anisotropic magnons in Y3Fe5O12 thin films</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Medwal, Rohit ; Deka, Angshuman ; Vas, Joseph Vimal ; Duchamp, Martial ; Asada, Hironori ; Gupta, Surbhi ; Fukuma, Yasuhiro ; Rawat, Rajdeep Singh</creator><creatorcontrib>Medwal, Rohit ; Deka, Angshuman ; Vas, Joseph Vimal ; Duchamp, Martial ; Asada, Hironori ; Gupta, Surbhi ; Fukuma, Yasuhiro ; Rawat, Rajdeep Singh</creatorcontrib><description>Directional specific control on the generation and propagation of magnons is essential for designing future magnon-based logic and memory devices for low power computing. The epitaxy of the ferromagnetic thin film is expected to facilitate anisotropic linewidths, which depend on the crystal cut and the orientation of the thin film. Here, we have shown the growth-induced magneto-crystalline anisotropy in 40 nm epitaxial yttrium iron garnet (YIG) thin films, which facilitate cubic and uniaxial in-plane anisotropy in the resonance field and linewidth using ferromagnetic resonance measurements. The growth-induced cubic and non-cubic anisotropy in epitaxial YIG thin films are explained using the short-range ordering of the Fe3+ cation pairs in octahedral and tetrahedral sublattices with respect to the crystal growth directions. This site-preferred directional anisotropy enables an anisotropic magnon–magnon interaction and opens an avenue to precisely control the propagation of magnonic current for spin-transfer logics using YIG-based magnonic technology.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/5.0064653</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Anisotropy ; Applied physics ; Crystal growth ; Crystal structure ; Crystals ; Epitaxial growth ; Ferromagnetic materials ; Ferromagnetic resonance ; Magnons ; Memory devices ; Propagation ; Thin films ; Yttrium ; Yttrium-iron garnet</subject><ispartof>Applied physics letters, 2021-10, Vol.119 (16)</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-a83bb974e18a7bcebf80e4374decde824a3dd9b3d15cf6ed8421cf784c5bced53</citedby><cites>FETCH-LOGICAL-c406t-a83bb974e18a7bcebf80e4374decde824a3dd9b3d15cf6ed8421cf784c5bced53</cites><orcidid>0000-0002-3161-2486 ; 0000-0002-2826-7888 ; 0000-0003-0648-2592 ; 0000-0002-5443-4694</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/5.0064653$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76384</link.rule.ids></links><search><creatorcontrib>Medwal, Rohit</creatorcontrib><creatorcontrib>Deka, Angshuman</creatorcontrib><creatorcontrib>Vas, Joseph Vimal</creatorcontrib><creatorcontrib>Duchamp, Martial</creatorcontrib><creatorcontrib>Asada, Hironori</creatorcontrib><creatorcontrib>Gupta, Surbhi</creatorcontrib><creatorcontrib>Fukuma, Yasuhiro</creatorcontrib><creatorcontrib>Rawat, Rajdeep Singh</creatorcontrib><title>Facet controlled anisotropic magnons in Y3Fe5O12 thin films</title><title>Applied physics letters</title><description>Directional specific control on the generation and propagation of magnons is essential for designing future magnon-based logic and memory devices for low power computing. The epitaxy of the ferromagnetic thin film is expected to facilitate anisotropic linewidths, which depend on the crystal cut and the orientation of the thin film. Here, we have shown the growth-induced magneto-crystalline anisotropy in 40 nm epitaxial yttrium iron garnet (YIG) thin films, which facilitate cubic and uniaxial in-plane anisotropy in the resonance field and linewidth using ferromagnetic resonance measurements. The growth-induced cubic and non-cubic anisotropy in epitaxial YIG thin films are explained using the short-range ordering of the Fe3+ cation pairs in octahedral and tetrahedral sublattices with respect to the crystal growth directions. This site-preferred directional anisotropy enables an anisotropic magnon–magnon interaction and opens an avenue to precisely control the propagation of magnonic current for spin-transfer logics using YIG-based magnonic technology.</description><subject>Anisotropy</subject><subject>Applied physics</subject><subject>Crystal growth</subject><subject>Crystal structure</subject><subject>Crystals</subject><subject>Epitaxial growth</subject><subject>Ferromagnetic materials</subject><subject>Ferromagnetic resonance</subject><subject>Magnons</subject><subject>Memory devices</subject><subject>Propagation</subject><subject>Thin films</subject><subject>Yttrium</subject><subject>Yttrium-iron garnet</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp90M1KAzEUBeAgCtbqwjcYcKUwNZkkkwyupFgVCt3owlXI5EdTpsmYpIJvb6RFF4Kry4GPc-EAcI7gDMEWX9MZhC1pKT4AEwQZqzFC_BBMIIS4bjuKjsFJSusSaYPxBNwspDK5UsHnGIbB6Ep6l0IJo1PVRr764FPlfPWCF4auUFPlt5KsGzbpFBxZOSRztr9T8Ly4e5o_1MvV_eP8dlkrAttcS477vmPEIC5Zr0xvOTQEM6KN0oY3RGKtux5rRJVtjeakQcoyThQtWlM8BRe73jGG961JWazDNvryUjSUY9QxSJqiLndKxZBSNFaM0W1k_BQIiu9tBBX7bYq92tmkXJbZBf-DP0L8hWLU9j_8t_kLRIdxqw</recordid><startdate>20211018</startdate><enddate>20211018</enddate><creator>Medwal, Rohit</creator><creator>Deka, Angshuman</creator><creator>Vas, Joseph Vimal</creator><creator>Duchamp, Martial</creator><creator>Asada, Hironori</creator><creator>Gupta, Surbhi</creator><creator>Fukuma, Yasuhiro</creator><creator>Rawat, Rajdeep Singh</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3161-2486</orcidid><orcidid>https://orcid.org/0000-0002-2826-7888</orcidid><orcidid>https://orcid.org/0000-0003-0648-2592</orcidid><orcidid>https://orcid.org/0000-0002-5443-4694</orcidid></search><sort><creationdate>20211018</creationdate><title>Facet controlled anisotropic magnons in Y3Fe5O12 thin films</title><author>Medwal, Rohit ; Deka, Angshuman ; Vas, Joseph Vimal ; Duchamp, Martial ; Asada, Hironori ; Gupta, Surbhi ; Fukuma, Yasuhiro ; Rawat, Rajdeep Singh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-a83bb974e18a7bcebf80e4374decde824a3dd9b3d15cf6ed8421cf784c5bced53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Anisotropy</topic><topic>Applied physics</topic><topic>Crystal growth</topic><topic>Crystal structure</topic><topic>Crystals</topic><topic>Epitaxial growth</topic><topic>Ferromagnetic materials</topic><topic>Ferromagnetic resonance</topic><topic>Magnons</topic><topic>Memory devices</topic><topic>Propagation</topic><topic>Thin films</topic><topic>Yttrium</topic><topic>Yttrium-iron garnet</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Medwal, Rohit</creatorcontrib><creatorcontrib>Deka, Angshuman</creatorcontrib><creatorcontrib>Vas, Joseph Vimal</creatorcontrib><creatorcontrib>Duchamp, Martial</creatorcontrib><creatorcontrib>Asada, Hironori</creatorcontrib><creatorcontrib>Gupta, Surbhi</creatorcontrib><creatorcontrib>Fukuma, Yasuhiro</creatorcontrib><creatorcontrib>Rawat, Rajdeep Singh</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Medwal, Rohit</au><au>Deka, Angshuman</au><au>Vas, Joseph Vimal</au><au>Duchamp, Martial</au><au>Asada, Hironori</au><au>Gupta, Surbhi</au><au>Fukuma, Yasuhiro</au><au>Rawat, Rajdeep Singh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Facet controlled anisotropic magnons in Y3Fe5O12 thin films</atitle><jtitle>Applied physics letters</jtitle><date>2021-10-18</date><risdate>2021</risdate><volume>119</volume><issue>16</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>Directional specific control on the generation and propagation of magnons is essential for designing future magnon-based logic and memory devices for low power computing. The epitaxy of the ferromagnetic thin film is expected to facilitate anisotropic linewidths, which depend on the crystal cut and the orientation of the thin film. Here, we have shown the growth-induced magneto-crystalline anisotropy in 40 nm epitaxial yttrium iron garnet (YIG) thin films, which facilitate cubic and uniaxial in-plane anisotropy in the resonance field and linewidth using ferromagnetic resonance measurements. The growth-induced cubic and non-cubic anisotropy in epitaxial YIG thin films are explained using the short-range ordering of the Fe3+ cation pairs in octahedral and tetrahedral sublattices with respect to the crystal growth directions. This site-preferred directional anisotropy enables an anisotropic magnon–magnon interaction and opens an avenue to precisely control the propagation of magnonic current for spin-transfer logics using YIG-based magnonic technology.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0064653</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-3161-2486</orcidid><orcidid>https://orcid.org/0000-0002-2826-7888</orcidid><orcidid>https://orcid.org/0000-0003-0648-2592</orcidid><orcidid>https://orcid.org/0000-0002-5443-4694</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6951 |
ispartof | Applied physics letters, 2021-10, Vol.119 (16) |
issn | 0003-6951 1077-3118 |
language | eng |
recordid | cdi_proquest_journals_2583197042 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Anisotropy Applied physics Crystal growth Crystal structure Crystals Epitaxial growth Ferromagnetic materials Ferromagnetic resonance Magnons Memory devices Propagation Thin films Yttrium Yttrium-iron garnet |
title | Facet controlled anisotropic magnons in Y3Fe5O12 thin films |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T08%3A02%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Facet%20controlled%20anisotropic%20magnons%20in%20Y3Fe5O12%20thin%20films&rft.jtitle=Applied%20physics%20letters&rft.au=Medwal,%20Rohit&rft.date=2021-10-18&rft.volume=119&rft.issue=16&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/5.0064653&rft_dat=%3Cproquest_cross%3E2583197042%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2583197042&rft_id=info:pmid/&rfr_iscdi=true |