Charge/discharge cycling of Li1+x(Ni0.6Co0.2Mn0.2)1−xO2 primary particles performed in a liquid microcell for transmission electron microscopy studies
Ni-rich layered oxides are promising positive electrodes for fulfillment of government and industry targets for lithium-ion-battery-operated electric mobility purposes. Apart from ongoing research focusing on their design and material production, advanced characterization techniques can provide valu...
Gespeichert in:
Veröffentlicht in: | JPhys Energy 2020-07, Vol.2 (3) |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | |
container_title | JPhys Energy |
container_volume | 2 |
creator | Hou, Jing Freiberg, Anna Shen, Tzu-Hsien Girod, Robin Gonthier, Julien Kim, Sung-Jin Maglia, Filippo Gasteiger, Hubert A Tileli, Vasiliki |
description | Ni-rich layered oxides are promising positive electrodes for fulfillment of government and industry targets for lithium-ion-battery-operated electric mobility purposes. Apart from ongoing research focusing on their design and material production, advanced characterization techniques can provide valuable insights on their stabilization by monitoring in situ the degradation mechanisms. Herein, we use liquid-phase transmission electron microscopy to examine the effects of electrochemical stimuli on Ni-rich oxide cathodes by introducing an optimized micro-scale battery configuration. Ball-milled Li1+x(Ni0.6Co0.2Mn0.2)1−xO2 (NCM622) particles were cycled against a delithiated LiFePO4 anode and the effects of different cycling methods were investigated. We show that commonly used cyclic voltammetry measurements at high scan rates cannot be used to simulate battery operation in situ due to geometry limitations of the cell that inhibits Li ion transport. However, using galvanostatic charge/discharge cycling and introducing a pause every 10 cycles for a total of 50 cycles results in degradation in the form of Mn and Co ion dissolution from the first 20 nm of the surface. Our results suggest that although performing battery cycling using liquid cell electron microscopy may differ from the case of coin cells, by tuning the electrochemical profiles used similar degradation mechanisms can be attained. |
doi_str_mv | 10.1088/2515-7655/ab979c |
format | Article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2583096128</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2583096128</sourcerecordid><originalsourceid>FETCH-LOGICAL-i298t-fd1cbb7a763a2ed91aa2431ecbe05aeb721a4f78ff372ff54323d2cc27755ab83</originalsourceid><addsrcrecordid>eNptkD1PwzAQhiMkJKrSndESC6ik9UccJyOK-JIKXWC2HMcurpI4tROJ_ANmJn4fv4SkRbCw3L26e3QnPUFwhuACwSRZYopoyGJKlyJPWSqPgsnv6CSYeb-FEOKExgzBSfCZvQq3UcvCeLlPQPayNPUGWA1WBs3fLp4MXMSZhQv8WA_lEn29f7ytMWicqYTrQSNca2SpPGiU09ZVqgCmBgKUZteZAlRGOitVWYJhCVonal8Z742tgSqVbN0Q9oyXtumBb7vCKH8aHGtRejX76dPg5fbmObsPV-u7h-x6FRqcJm2oCyTznAkWE4FVkSIhcESQkrmCVKicYSQizRKtCcNa04hgUmApMWOUijwh0-D8cLdxdtcp3_Kt7Vw9vOSYJgSmMcIjdXWgjG3-AAT5qJyPfvnolx-UD_j8H3zbqFq5Tc8xJxySCELGm0KTb0itiBI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2583096128</pqid></control><display><type>article</type><title>Charge/discharge cycling of Li1+x(Ni0.6Co0.2Mn0.2)1−xO2 primary particles performed in a liquid microcell for transmission electron microscopy studies</title><source>DOAJ Directory of Open Access Journals</source><source>Institute of Physics Open Access Journal Titles</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Hou, Jing ; Freiberg, Anna ; Shen, Tzu-Hsien ; Girod, Robin ; Gonthier, Julien ; Kim, Sung-Jin ; Maglia, Filippo ; Gasteiger, Hubert A ; Tileli, Vasiliki</creator><creatorcontrib>Hou, Jing ; Freiberg, Anna ; Shen, Tzu-Hsien ; Girod, Robin ; Gonthier, Julien ; Kim, Sung-Jin ; Maglia, Filippo ; Gasteiger, Hubert A ; Tileli, Vasiliki</creatorcontrib><description>Ni-rich layered oxides are promising positive electrodes for fulfillment of government and industry targets for lithium-ion-battery-operated electric mobility purposes. Apart from ongoing research focusing on their design and material production, advanced characterization techniques can provide valuable insights on their stabilization by monitoring in situ the degradation mechanisms. Herein, we use liquid-phase transmission electron microscopy to examine the effects of electrochemical stimuli on Ni-rich oxide cathodes by introducing an optimized micro-scale battery configuration. Ball-milled Li1+x(Ni0.6Co0.2Mn0.2)1−xO2 (NCM622) particles were cycled against a delithiated LiFePO4 anode and the effects of different cycling methods were investigated. We show that commonly used cyclic voltammetry measurements at high scan rates cannot be used to simulate battery operation in situ due to geometry limitations of the cell that inhibits Li ion transport. However, using galvanostatic charge/discharge cycling and introducing a pause every 10 cycles for a total of 50 cycles results in degradation in the form of Mn and Co ion dissolution from the first 20 nm of the surface. Our results suggest that although performing battery cycling using liquid cell electron microscopy may differ from the case of coin cells, by tuning the electrochemical profiles used similar degradation mechanisms can be attained.</description><identifier>EISSN: 2515-7655</identifier><identifier>DOI: 10.1088/2515-7655/ab979c</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Anode effect ; Ball milling ; cyclic voltammetry ; Degradation ; Discharge ; galvanostatic charge/discharge ; Ion transport ; Liquid phases ; liquid-phase transmission electron microscopy ; Lithium ions ; Ni-rich layered oxide cathodes ; Rechargeable batteries ; Transmission electron microscopy</subject><ispartof>JPhys Energy, 2020-07, Vol.2 (3)</ispartof><rights>2020 The Author(s). Published by IOP Publishing Ltd</rights><rights>Copyright IOP Publishing Jul 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-0520-6900</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/2515-7655/ab979c/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,864,27922,27923,38888,53865</link.rule.ids></links><search><creatorcontrib>Hou, Jing</creatorcontrib><creatorcontrib>Freiberg, Anna</creatorcontrib><creatorcontrib>Shen, Tzu-Hsien</creatorcontrib><creatorcontrib>Girod, Robin</creatorcontrib><creatorcontrib>Gonthier, Julien</creatorcontrib><creatorcontrib>Kim, Sung-Jin</creatorcontrib><creatorcontrib>Maglia, Filippo</creatorcontrib><creatorcontrib>Gasteiger, Hubert A</creatorcontrib><creatorcontrib>Tileli, Vasiliki</creatorcontrib><title>Charge/discharge cycling of Li1+x(Ni0.6Co0.2Mn0.2)1−xO2 primary particles performed in a liquid microcell for transmission electron microscopy studies</title><title>JPhys Energy</title><addtitle>JPhysEnergy</addtitle><addtitle>J. Phys. Energy</addtitle><description>Ni-rich layered oxides are promising positive electrodes for fulfillment of government and industry targets for lithium-ion-battery-operated electric mobility purposes. Apart from ongoing research focusing on their design and material production, advanced characterization techniques can provide valuable insights on their stabilization by monitoring in situ the degradation mechanisms. Herein, we use liquid-phase transmission electron microscopy to examine the effects of electrochemical stimuli on Ni-rich oxide cathodes by introducing an optimized micro-scale battery configuration. Ball-milled Li1+x(Ni0.6Co0.2Mn0.2)1−xO2 (NCM622) particles were cycled against a delithiated LiFePO4 anode and the effects of different cycling methods were investigated. We show that commonly used cyclic voltammetry measurements at high scan rates cannot be used to simulate battery operation in situ due to geometry limitations of the cell that inhibits Li ion transport. However, using galvanostatic charge/discharge cycling and introducing a pause every 10 cycles for a total of 50 cycles results in degradation in the form of Mn and Co ion dissolution from the first 20 nm of the surface. Our results suggest that although performing battery cycling using liquid cell electron microscopy may differ from the case of coin cells, by tuning the electrochemical profiles used similar degradation mechanisms can be attained.</description><subject>Anode effect</subject><subject>Ball milling</subject><subject>cyclic voltammetry</subject><subject>Degradation</subject><subject>Discharge</subject><subject>galvanostatic charge/discharge</subject><subject>Ion transport</subject><subject>Liquid phases</subject><subject>liquid-phase transmission electron microscopy</subject><subject>Lithium ions</subject><subject>Ni-rich layered oxide cathodes</subject><subject>Rechargeable batteries</subject><subject>Transmission electron microscopy</subject><issn>2515-7655</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNptkD1PwzAQhiMkJKrSndESC6ik9UccJyOK-JIKXWC2HMcurpI4tROJ_ANmJn4fv4SkRbCw3L26e3QnPUFwhuACwSRZYopoyGJKlyJPWSqPgsnv6CSYeb-FEOKExgzBSfCZvQq3UcvCeLlPQPayNPUGWA1WBs3fLp4MXMSZhQv8WA_lEn29f7ytMWicqYTrQSNca2SpPGiU09ZVqgCmBgKUZteZAlRGOitVWYJhCVonal8Z742tgSqVbN0Q9oyXtumBb7vCKH8aHGtRejX76dPg5fbmObsPV-u7h-x6FRqcJm2oCyTznAkWE4FVkSIhcESQkrmCVKicYSQizRKtCcNa04hgUmApMWOUijwh0-D8cLdxdtcp3_Kt7Vw9vOSYJgSmMcIjdXWgjG3-AAT5qJyPfvnolx-UD_j8H3zbqFq5Tc8xJxySCELGm0KTb0itiBI</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Hou, Jing</creator><creator>Freiberg, Anna</creator><creator>Shen, Tzu-Hsien</creator><creator>Girod, Robin</creator><creator>Gonthier, Julien</creator><creator>Kim, Sung-Jin</creator><creator>Maglia, Filippo</creator><creator>Gasteiger, Hubert A</creator><creator>Tileli, Vasiliki</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>3V.</scope><scope>7SP</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-0520-6900</orcidid></search><sort><creationdate>20200701</creationdate><title>Charge/discharge cycling of Li1+x(Ni0.6Co0.2Mn0.2)1−xO2 primary particles performed in a liquid microcell for transmission electron microscopy studies</title><author>Hou, Jing ; Freiberg, Anna ; Shen, Tzu-Hsien ; Girod, Robin ; Gonthier, Julien ; Kim, Sung-Jin ; Maglia, Filippo ; Gasteiger, Hubert A ; Tileli, Vasiliki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i298t-fd1cbb7a763a2ed91aa2431ecbe05aeb721a4f78ff372ff54323d2cc27755ab83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anode effect</topic><topic>Ball milling</topic><topic>cyclic voltammetry</topic><topic>Degradation</topic><topic>Discharge</topic><topic>galvanostatic charge/discharge</topic><topic>Ion transport</topic><topic>Liquid phases</topic><topic>liquid-phase transmission electron microscopy</topic><topic>Lithium ions</topic><topic>Ni-rich layered oxide cathodes</topic><topic>Rechargeable batteries</topic><topic>Transmission electron microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hou, Jing</creatorcontrib><creatorcontrib>Freiberg, Anna</creatorcontrib><creatorcontrib>Shen, Tzu-Hsien</creatorcontrib><creatorcontrib>Girod, Robin</creatorcontrib><creatorcontrib>Gonthier, Julien</creatorcontrib><creatorcontrib>Kim, Sung-Jin</creatorcontrib><creatorcontrib>Maglia, Filippo</creatorcontrib><creatorcontrib>Gasteiger, Hubert A</creatorcontrib><creatorcontrib>Tileli, Vasiliki</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>ProQuest Central (Corporate)</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>JPhys Energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hou, Jing</au><au>Freiberg, Anna</au><au>Shen, Tzu-Hsien</au><au>Girod, Robin</au><au>Gonthier, Julien</au><au>Kim, Sung-Jin</au><au>Maglia, Filippo</au><au>Gasteiger, Hubert A</au><au>Tileli, Vasiliki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Charge/discharge cycling of Li1+x(Ni0.6Co0.2Mn0.2)1−xO2 primary particles performed in a liquid microcell for transmission electron microscopy studies</atitle><jtitle>JPhys Energy</jtitle><stitle>JPhysEnergy</stitle><addtitle>J. Phys. Energy</addtitle><date>2020-07-01</date><risdate>2020</risdate><volume>2</volume><issue>3</issue><eissn>2515-7655</eissn><abstract>Ni-rich layered oxides are promising positive electrodes for fulfillment of government and industry targets for lithium-ion-battery-operated electric mobility purposes. Apart from ongoing research focusing on their design and material production, advanced characterization techniques can provide valuable insights on their stabilization by monitoring in situ the degradation mechanisms. Herein, we use liquid-phase transmission electron microscopy to examine the effects of electrochemical stimuli on Ni-rich oxide cathodes by introducing an optimized micro-scale battery configuration. Ball-milled Li1+x(Ni0.6Co0.2Mn0.2)1−xO2 (NCM622) particles were cycled against a delithiated LiFePO4 anode and the effects of different cycling methods were investigated. We show that commonly used cyclic voltammetry measurements at high scan rates cannot be used to simulate battery operation in situ due to geometry limitations of the cell that inhibits Li ion transport. However, using galvanostatic charge/discharge cycling and introducing a pause every 10 cycles for a total of 50 cycles results in degradation in the form of Mn and Co ion dissolution from the first 20 nm of the surface. Our results suggest that although performing battery cycling using liquid cell electron microscopy may differ from the case of coin cells, by tuning the electrochemical profiles used similar degradation mechanisms can be attained.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/2515-7655/ab979c</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-0520-6900</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2515-7655 |
ispartof | JPhys Energy, 2020-07, Vol.2 (3) |
issn | 2515-7655 |
language | eng |
recordid | cdi_proquest_journals_2583096128 |
source | DOAJ Directory of Open Access Journals; Institute of Physics Open Access Journal Titles; EZB-FREE-00999 freely available EZB journals |
subjects | Anode effect Ball milling cyclic voltammetry Degradation Discharge galvanostatic charge/discharge Ion transport Liquid phases liquid-phase transmission electron microscopy Lithium ions Ni-rich layered oxide cathodes Rechargeable batteries Transmission electron microscopy |
title | Charge/discharge cycling of Li1+x(Ni0.6Co0.2Mn0.2)1−xO2 primary particles performed in a liquid microcell for transmission electron microscopy studies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A08%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Charge/discharge%20cycling%20of%20Li1+x(Ni0.6Co0.2Mn0.2)1%E2%88%92xO2%20primary%20particles%20performed%20in%20a%20liquid%20microcell%20for%20transmission%20electron%20microscopy%20studies&rft.jtitle=JPhys%20Energy&rft.au=Hou,%20Jing&rft.date=2020-07-01&rft.volume=2&rft.issue=3&rft.eissn=2515-7655&rft_id=info:doi/10.1088/2515-7655/ab979c&rft_dat=%3Cproquest_iop_j%3E2583096128%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2583096128&rft_id=info:pmid/&rfr_iscdi=true |