Assessment of Precipitation Simulations in Central Asia by CMIP5 Climate Models

The Coupled Model Intercomparison Project Phase 5 (CMIP5) provides data, which is widely used to assess global and regional climate change. In this study, we evaluated the ability of 37 global climate models (GCMs) of CMIP5 to simulate historical precipitation in Central Asia (CA). The relative root...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water (Basel) 2018-10, Vol.10 (11), p.1516
Hauptverfasser: Ta, Zhijie, Yu, Yang, Sun, Lingxiao, Chen, Xi, Mu, Guijin, Yu, Ruide
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page 1516
container_title Water (Basel)
container_volume 10
creator Ta, Zhijie
Yu, Yang
Sun, Lingxiao
Chen, Xi
Mu, Guijin
Yu, Ruide
description The Coupled Model Intercomparison Project Phase 5 (CMIP5) provides data, which is widely used to assess global and regional climate change. In this study, we evaluated the ability of 37 global climate models (GCMs) of CMIP5 to simulate historical precipitation in Central Asia (CA). The relative root mean square error (RRMSE), spatial correlation coefficient, and Kling-Gupta efficiency (KGE) were used as criteria for evaluation. The precipitation simulation results of GCMs were compared with the Climatic Research Unit (CRU) precipitation in 1986–2005. Most models show a variety of precipitation simulation capabilities both spatially and temporally, whereas the top six models were identified as having good performance in CA, including HadCM3, MIROC5, MPI-ESM-LR, MPI-ESM-P, CMCC-CM, and CMCC-CMS. As the GCMs have large uncertainties in the prediction of future precipitation, it is difficult to find the best model to predict future precipitation in CA. Multi-Model Ensemble (MME) results can give a good simulation of precipitation, and are superior to individual models.
doi_str_mv 10.3390/w10111516
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2582935630</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2582935630</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-85010d05b5d19e182691431fb7ee16e0c9941928f96d3c06cc3372cfae65cb0b3</originalsourceid><addsrcrecordid>eNpNkE9Lw0AQxRdRsNQe_AYLnjxEZ3az2-yxBP9BSwvqOSSbCWxJk7qTIv32Riviu8w7_Jj3eEJcI9xp7eD-EwERDdozMVEw10mapnj-z1-KGfMWRqUuywxMxHrBTMw76gbZN3ITyYd9GMoh9J18DbtD-2NZhk7mIxTLVi44lLI6ynz1sjEyb8OuHEiu-ppavhIXTdkyzX7vVLw_Przlz8ly_fSSL5aJV04NyZiNUIOpTI2OMFPWYaqxqeZEaAm8cyk6lTXO1tqD9V7rufJNSdb4Cio9FTenv_vYfxyIh2LbH2I3RhbKZMppYzWM1O2J8rFnjtQU-zi2jccCofierPibTH8BdVBbzA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2582935630</pqid></control><display><type>article</type><title>Assessment of Precipitation Simulations in Central Asia by CMIP5 Climate Models</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><creator>Ta, Zhijie ; Yu, Yang ; Sun, Lingxiao ; Chen, Xi ; Mu, Guijin ; Yu, Ruide</creator><creatorcontrib>Ta, Zhijie ; Yu, Yang ; Sun, Lingxiao ; Chen, Xi ; Mu, Guijin ; Yu, Ruide</creatorcontrib><description>The Coupled Model Intercomparison Project Phase 5 (CMIP5) provides data, which is widely used to assess global and regional climate change. In this study, we evaluated the ability of 37 global climate models (GCMs) of CMIP5 to simulate historical precipitation in Central Asia (CA). The relative root mean square error (RRMSE), spatial correlation coefficient, and Kling-Gupta efficiency (KGE) were used as criteria for evaluation. The precipitation simulation results of GCMs were compared with the Climatic Research Unit (CRU) precipitation in 1986–2005. Most models show a variety of precipitation simulation capabilities both spatially and temporally, whereas the top six models were identified as having good performance in CA, including HadCM3, MIROC5, MPI-ESM-LR, MPI-ESM-P, CMCC-CM, and CMCC-CMS. As the GCMs have large uncertainties in the prediction of future precipitation, it is difficult to find the best model to predict future precipitation in CA. Multi-Model Ensemble (MME) results can give a good simulation of precipitation, and are superior to individual models.</description><identifier>ISSN: 2073-4441</identifier><identifier>EISSN: 2073-4441</identifier><identifier>DOI: 10.3390/w10111516</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Climate change ; Climate models ; Correlation coefficient ; Correlation coefficients ; Datasets ; Experiments ; Global climate models ; International relations ; Mean square errors ; Performance evaluation ; Precipitation ; Simulation</subject><ispartof>Water (Basel), 2018-10, Vol.10 (11), p.1516</ispartof><rights>2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-85010d05b5d19e182691431fb7ee16e0c9941928f96d3c06cc3372cfae65cb0b3</citedby><cites>FETCH-LOGICAL-c292t-85010d05b5d19e182691431fb7ee16e0c9941928f96d3c06cc3372cfae65cb0b3</cites><orcidid>0000-0002-5836-358X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Ta, Zhijie</creatorcontrib><creatorcontrib>Yu, Yang</creatorcontrib><creatorcontrib>Sun, Lingxiao</creatorcontrib><creatorcontrib>Chen, Xi</creatorcontrib><creatorcontrib>Mu, Guijin</creatorcontrib><creatorcontrib>Yu, Ruide</creatorcontrib><title>Assessment of Precipitation Simulations in Central Asia by CMIP5 Climate Models</title><title>Water (Basel)</title><description>The Coupled Model Intercomparison Project Phase 5 (CMIP5) provides data, which is widely used to assess global and regional climate change. In this study, we evaluated the ability of 37 global climate models (GCMs) of CMIP5 to simulate historical precipitation in Central Asia (CA). The relative root mean square error (RRMSE), spatial correlation coefficient, and Kling-Gupta efficiency (KGE) were used as criteria for evaluation. The precipitation simulation results of GCMs were compared with the Climatic Research Unit (CRU) precipitation in 1986–2005. Most models show a variety of precipitation simulation capabilities both spatially and temporally, whereas the top six models were identified as having good performance in CA, including HadCM3, MIROC5, MPI-ESM-LR, MPI-ESM-P, CMCC-CM, and CMCC-CMS. As the GCMs have large uncertainties in the prediction of future precipitation, it is difficult to find the best model to predict future precipitation in CA. Multi-Model Ensemble (MME) results can give a good simulation of precipitation, and are superior to individual models.</description><subject>Climate change</subject><subject>Climate models</subject><subject>Correlation coefficient</subject><subject>Correlation coefficients</subject><subject>Datasets</subject><subject>Experiments</subject><subject>Global climate models</subject><subject>International relations</subject><subject>Mean square errors</subject><subject>Performance evaluation</subject><subject>Precipitation</subject><subject>Simulation</subject><issn>2073-4441</issn><issn>2073-4441</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpNkE9Lw0AQxRdRsNQe_AYLnjxEZ3az2-yxBP9BSwvqOSSbCWxJk7qTIv32Riviu8w7_Jj3eEJcI9xp7eD-EwERDdozMVEw10mapnj-z1-KGfMWRqUuywxMxHrBTMw76gbZN3ITyYd9GMoh9J18DbtD-2NZhk7mIxTLVi44lLI6ynz1sjEyb8OuHEiu-ppavhIXTdkyzX7vVLw_Przlz8ly_fSSL5aJV04NyZiNUIOpTI2OMFPWYaqxqeZEaAm8cyk6lTXO1tqD9V7rufJNSdb4Cio9FTenv_vYfxyIh2LbH2I3RhbKZMppYzWM1O2J8rFnjtQU-zi2jccCofierPibTH8BdVBbzA</recordid><startdate>20181025</startdate><enddate>20181025</enddate><creator>Ta, Zhijie</creator><creator>Yu, Yang</creator><creator>Sun, Lingxiao</creator><creator>Chen, Xi</creator><creator>Mu, Guijin</creator><creator>Yu, Ruide</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-5836-358X</orcidid></search><sort><creationdate>20181025</creationdate><title>Assessment of Precipitation Simulations in Central Asia by CMIP5 Climate Models</title><author>Ta, Zhijie ; Yu, Yang ; Sun, Lingxiao ; Chen, Xi ; Mu, Guijin ; Yu, Ruide</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-85010d05b5d19e182691431fb7ee16e0c9941928f96d3c06cc3372cfae65cb0b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Climate change</topic><topic>Climate models</topic><topic>Correlation coefficient</topic><topic>Correlation coefficients</topic><topic>Datasets</topic><topic>Experiments</topic><topic>Global climate models</topic><topic>International relations</topic><topic>Mean square errors</topic><topic>Performance evaluation</topic><topic>Precipitation</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ta, Zhijie</creatorcontrib><creatorcontrib>Yu, Yang</creatorcontrib><creatorcontrib>Sun, Lingxiao</creatorcontrib><creatorcontrib>Chen, Xi</creatorcontrib><creatorcontrib>Mu, Guijin</creatorcontrib><creatorcontrib>Yu, Ruide</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Water (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ta, Zhijie</au><au>Yu, Yang</au><au>Sun, Lingxiao</au><au>Chen, Xi</au><au>Mu, Guijin</au><au>Yu, Ruide</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessment of Precipitation Simulations in Central Asia by CMIP5 Climate Models</atitle><jtitle>Water (Basel)</jtitle><date>2018-10-25</date><risdate>2018</risdate><volume>10</volume><issue>11</issue><spage>1516</spage><pages>1516-</pages><issn>2073-4441</issn><eissn>2073-4441</eissn><abstract>The Coupled Model Intercomparison Project Phase 5 (CMIP5) provides data, which is widely used to assess global and regional climate change. In this study, we evaluated the ability of 37 global climate models (GCMs) of CMIP5 to simulate historical precipitation in Central Asia (CA). The relative root mean square error (RRMSE), spatial correlation coefficient, and Kling-Gupta efficiency (KGE) were used as criteria for evaluation. The precipitation simulation results of GCMs were compared with the Climatic Research Unit (CRU) precipitation in 1986–2005. Most models show a variety of precipitation simulation capabilities both spatially and temporally, whereas the top six models were identified as having good performance in CA, including HadCM3, MIROC5, MPI-ESM-LR, MPI-ESM-P, CMCC-CM, and CMCC-CMS. As the GCMs have large uncertainties in the prediction of future precipitation, it is difficult to find the best model to predict future precipitation in CA. Multi-Model Ensemble (MME) results can give a good simulation of precipitation, and are superior to individual models.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/w10111516</doi><orcidid>https://orcid.org/0000-0002-5836-358X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-4441
ispartof Water (Basel), 2018-10, Vol.10 (11), p.1516
issn 2073-4441
2073-4441
language eng
recordid cdi_proquest_journals_2582935630
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute
subjects Climate change
Climate models
Correlation coefficient
Correlation coefficients
Datasets
Experiments
Global climate models
International relations
Mean square errors
Performance evaluation
Precipitation
Simulation
title Assessment of Precipitation Simulations in Central Asia by CMIP5 Climate Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T13%3A21%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessment%20of%20Precipitation%20Simulations%20in%20Central%20Asia%20by%20CMIP5%20Climate%20Models&rft.jtitle=Water%20(Basel)&rft.au=Ta,%20Zhijie&rft.date=2018-10-25&rft.volume=10&rft.issue=11&rft.spage=1516&rft.pages=1516-&rft.issn=2073-4441&rft.eissn=2073-4441&rft_id=info:doi/10.3390/w10111516&rft_dat=%3Cproquest_cross%3E2582935630%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2582935630&rft_id=info:pmid/&rfr_iscdi=true