Assessment of Precipitation Simulations in Central Asia by CMIP5 Climate Models
The Coupled Model Intercomparison Project Phase 5 (CMIP5) provides data, which is widely used to assess global and regional climate change. In this study, we evaluated the ability of 37 global climate models (GCMs) of CMIP5 to simulate historical precipitation in Central Asia (CA). The relative root...
Gespeichert in:
Veröffentlicht in: | Water (Basel) 2018-10, Vol.10 (11), p.1516 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 11 |
container_start_page | 1516 |
container_title | Water (Basel) |
container_volume | 10 |
creator | Ta, Zhijie Yu, Yang Sun, Lingxiao Chen, Xi Mu, Guijin Yu, Ruide |
description | The Coupled Model Intercomparison Project Phase 5 (CMIP5) provides data, which is widely used to assess global and regional climate change. In this study, we evaluated the ability of 37 global climate models (GCMs) of CMIP5 to simulate historical precipitation in Central Asia (CA). The relative root mean square error (RRMSE), spatial correlation coefficient, and Kling-Gupta efficiency (KGE) were used as criteria for evaluation. The precipitation simulation results of GCMs were compared with the Climatic Research Unit (CRU) precipitation in 1986–2005. Most models show a variety of precipitation simulation capabilities both spatially and temporally, whereas the top six models were identified as having good performance in CA, including HadCM3, MIROC5, MPI-ESM-LR, MPI-ESM-P, CMCC-CM, and CMCC-CMS. As the GCMs have large uncertainties in the prediction of future precipitation, it is difficult to find the best model to predict future precipitation in CA. Multi-Model Ensemble (MME) results can give a good simulation of precipitation, and are superior to individual models. |
doi_str_mv | 10.3390/w10111516 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2582935630</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2582935630</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-85010d05b5d19e182691431fb7ee16e0c9941928f96d3c06cc3372cfae65cb0b3</originalsourceid><addsrcrecordid>eNpNkE9Lw0AQxRdRsNQe_AYLnjxEZ3az2-yxBP9BSwvqOSSbCWxJk7qTIv32Riviu8w7_Jj3eEJcI9xp7eD-EwERDdozMVEw10mapnj-z1-KGfMWRqUuywxMxHrBTMw76gbZN3ITyYd9GMoh9J18DbtD-2NZhk7mIxTLVi44lLI6ynz1sjEyb8OuHEiu-ppavhIXTdkyzX7vVLw_Przlz8ly_fSSL5aJV04NyZiNUIOpTI2OMFPWYaqxqeZEaAm8cyk6lTXO1tqD9V7rufJNSdb4Cio9FTenv_vYfxyIh2LbH2I3RhbKZMppYzWM1O2J8rFnjtQU-zi2jccCofierPibTH8BdVBbzA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2582935630</pqid></control><display><type>article</type><title>Assessment of Precipitation Simulations in Central Asia by CMIP5 Climate Models</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><creator>Ta, Zhijie ; Yu, Yang ; Sun, Lingxiao ; Chen, Xi ; Mu, Guijin ; Yu, Ruide</creator><creatorcontrib>Ta, Zhijie ; Yu, Yang ; Sun, Lingxiao ; Chen, Xi ; Mu, Guijin ; Yu, Ruide</creatorcontrib><description>The Coupled Model Intercomparison Project Phase 5 (CMIP5) provides data, which is widely used to assess global and regional climate change. In this study, we evaluated the ability of 37 global climate models (GCMs) of CMIP5 to simulate historical precipitation in Central Asia (CA). The relative root mean square error (RRMSE), spatial correlation coefficient, and Kling-Gupta efficiency (KGE) were used as criteria for evaluation. The precipitation simulation results of GCMs were compared with the Climatic Research Unit (CRU) precipitation in 1986–2005. Most models show a variety of precipitation simulation capabilities both spatially and temporally, whereas the top six models were identified as having good performance in CA, including HadCM3, MIROC5, MPI-ESM-LR, MPI-ESM-P, CMCC-CM, and CMCC-CMS. As the GCMs have large uncertainties in the prediction of future precipitation, it is difficult to find the best model to predict future precipitation in CA. Multi-Model Ensemble (MME) results can give a good simulation of precipitation, and are superior to individual models.</description><identifier>ISSN: 2073-4441</identifier><identifier>EISSN: 2073-4441</identifier><identifier>DOI: 10.3390/w10111516</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Climate change ; Climate models ; Correlation coefficient ; Correlation coefficients ; Datasets ; Experiments ; Global climate models ; International relations ; Mean square errors ; Performance evaluation ; Precipitation ; Simulation</subject><ispartof>Water (Basel), 2018-10, Vol.10 (11), p.1516</ispartof><rights>2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-85010d05b5d19e182691431fb7ee16e0c9941928f96d3c06cc3372cfae65cb0b3</citedby><cites>FETCH-LOGICAL-c292t-85010d05b5d19e182691431fb7ee16e0c9941928f96d3c06cc3372cfae65cb0b3</cites><orcidid>0000-0002-5836-358X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Ta, Zhijie</creatorcontrib><creatorcontrib>Yu, Yang</creatorcontrib><creatorcontrib>Sun, Lingxiao</creatorcontrib><creatorcontrib>Chen, Xi</creatorcontrib><creatorcontrib>Mu, Guijin</creatorcontrib><creatorcontrib>Yu, Ruide</creatorcontrib><title>Assessment of Precipitation Simulations in Central Asia by CMIP5 Climate Models</title><title>Water (Basel)</title><description>The Coupled Model Intercomparison Project Phase 5 (CMIP5) provides data, which is widely used to assess global and regional climate change. In this study, we evaluated the ability of 37 global climate models (GCMs) of CMIP5 to simulate historical precipitation in Central Asia (CA). The relative root mean square error (RRMSE), spatial correlation coefficient, and Kling-Gupta efficiency (KGE) were used as criteria for evaluation. The precipitation simulation results of GCMs were compared with the Climatic Research Unit (CRU) precipitation in 1986–2005. Most models show a variety of precipitation simulation capabilities both spatially and temporally, whereas the top six models were identified as having good performance in CA, including HadCM3, MIROC5, MPI-ESM-LR, MPI-ESM-P, CMCC-CM, and CMCC-CMS. As the GCMs have large uncertainties in the prediction of future precipitation, it is difficult to find the best model to predict future precipitation in CA. Multi-Model Ensemble (MME) results can give a good simulation of precipitation, and are superior to individual models.</description><subject>Climate change</subject><subject>Climate models</subject><subject>Correlation coefficient</subject><subject>Correlation coefficients</subject><subject>Datasets</subject><subject>Experiments</subject><subject>Global climate models</subject><subject>International relations</subject><subject>Mean square errors</subject><subject>Performance evaluation</subject><subject>Precipitation</subject><subject>Simulation</subject><issn>2073-4441</issn><issn>2073-4441</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpNkE9Lw0AQxRdRsNQe_AYLnjxEZ3az2-yxBP9BSwvqOSSbCWxJk7qTIv32Riviu8w7_Jj3eEJcI9xp7eD-EwERDdozMVEw10mapnj-z1-KGfMWRqUuywxMxHrBTMw76gbZN3ITyYd9GMoh9J18DbtD-2NZhk7mIxTLVi44lLI6ynz1sjEyb8OuHEiu-ppavhIXTdkyzX7vVLw_Przlz8ly_fSSL5aJV04NyZiNUIOpTI2OMFPWYaqxqeZEaAm8cyk6lTXO1tqD9V7rufJNSdb4Cio9FTenv_vYfxyIh2LbH2I3RhbKZMppYzWM1O2J8rFnjtQU-zi2jccCofierPibTH8BdVBbzA</recordid><startdate>20181025</startdate><enddate>20181025</enddate><creator>Ta, Zhijie</creator><creator>Yu, Yang</creator><creator>Sun, Lingxiao</creator><creator>Chen, Xi</creator><creator>Mu, Guijin</creator><creator>Yu, Ruide</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-5836-358X</orcidid></search><sort><creationdate>20181025</creationdate><title>Assessment of Precipitation Simulations in Central Asia by CMIP5 Climate Models</title><author>Ta, Zhijie ; Yu, Yang ; Sun, Lingxiao ; Chen, Xi ; Mu, Guijin ; Yu, Ruide</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-85010d05b5d19e182691431fb7ee16e0c9941928f96d3c06cc3372cfae65cb0b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Climate change</topic><topic>Climate models</topic><topic>Correlation coefficient</topic><topic>Correlation coefficients</topic><topic>Datasets</topic><topic>Experiments</topic><topic>Global climate models</topic><topic>International relations</topic><topic>Mean square errors</topic><topic>Performance evaluation</topic><topic>Precipitation</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ta, Zhijie</creatorcontrib><creatorcontrib>Yu, Yang</creatorcontrib><creatorcontrib>Sun, Lingxiao</creatorcontrib><creatorcontrib>Chen, Xi</creatorcontrib><creatorcontrib>Mu, Guijin</creatorcontrib><creatorcontrib>Yu, Ruide</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Water (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ta, Zhijie</au><au>Yu, Yang</au><au>Sun, Lingxiao</au><au>Chen, Xi</au><au>Mu, Guijin</au><au>Yu, Ruide</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessment of Precipitation Simulations in Central Asia by CMIP5 Climate Models</atitle><jtitle>Water (Basel)</jtitle><date>2018-10-25</date><risdate>2018</risdate><volume>10</volume><issue>11</issue><spage>1516</spage><pages>1516-</pages><issn>2073-4441</issn><eissn>2073-4441</eissn><abstract>The Coupled Model Intercomparison Project Phase 5 (CMIP5) provides data, which is widely used to assess global and regional climate change. In this study, we evaluated the ability of 37 global climate models (GCMs) of CMIP5 to simulate historical precipitation in Central Asia (CA). The relative root mean square error (RRMSE), spatial correlation coefficient, and Kling-Gupta efficiency (KGE) were used as criteria for evaluation. The precipitation simulation results of GCMs were compared with the Climatic Research Unit (CRU) precipitation in 1986–2005. Most models show a variety of precipitation simulation capabilities both spatially and temporally, whereas the top six models were identified as having good performance in CA, including HadCM3, MIROC5, MPI-ESM-LR, MPI-ESM-P, CMCC-CM, and CMCC-CMS. As the GCMs have large uncertainties in the prediction of future precipitation, it is difficult to find the best model to predict future precipitation in CA. Multi-Model Ensemble (MME) results can give a good simulation of precipitation, and are superior to individual models.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/w10111516</doi><orcidid>https://orcid.org/0000-0002-5836-358X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2073-4441 |
ispartof | Water (Basel), 2018-10, Vol.10 (11), p.1516 |
issn | 2073-4441 2073-4441 |
language | eng |
recordid | cdi_proquest_journals_2582935630 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute |
subjects | Climate change Climate models Correlation coefficient Correlation coefficients Datasets Experiments Global climate models International relations Mean square errors Performance evaluation Precipitation Simulation |
title | Assessment of Precipitation Simulations in Central Asia by CMIP5 Climate Models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T13%3A21%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessment%20of%20Precipitation%20Simulations%20in%20Central%20Asia%20by%20CMIP5%20Climate%20Models&rft.jtitle=Water%20(Basel)&rft.au=Ta,%20Zhijie&rft.date=2018-10-25&rft.volume=10&rft.issue=11&rft.spage=1516&rft.pages=1516-&rft.issn=2073-4441&rft.eissn=2073-4441&rft_id=info:doi/10.3390/w10111516&rft_dat=%3Cproquest_cross%3E2582935630%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2582935630&rft_id=info:pmid/&rfr_iscdi=true |