DYLE: Dynamic Latent Extraction for Abstractive Long-Input Summarization

Transformer-based models have achieved state-of-the-art performance on short-input summarization. However, they still struggle with summarizing longer text. In this paper, we present DYLE, a novel dynamic latent extraction approach for abstractive long-input summarization. DYLE jointly trains an ext...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-04
Hauptverfasser: Mao, Ziming, Chen Henry Wu, Ni, Ansong, Zhang, Yusen, Zhang, Rui, Yu, Tao, Budhaditya Deb, Zhu, Chenguang, Awadallah, Ahmed H, Radev, Dragomir
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Mao, Ziming
Chen Henry Wu
Ni, Ansong
Zhang, Yusen
Zhang, Rui
Yu, Tao
Budhaditya Deb
Zhu, Chenguang
Awadallah, Ahmed H
Radev, Dragomir
description Transformer-based models have achieved state-of-the-art performance on short-input summarization. However, they still struggle with summarizing longer text. In this paper, we present DYLE, a novel dynamic latent extraction approach for abstractive long-input summarization. DYLE jointly trains an extractor and a generator and treats the extracted text snippets as the latent variable, allowing dynamic snippet-level attention weights during decoding. To provide adequate supervision, we propose simple yet effective heuristics for oracle extraction as well as a consistency loss term, which encourages the extractor to approximate the averaged dynamic weights predicted by the generator. We evaluate our method on different long-document and long-dialogue summarization tasks: GovReport, QMSum, and arXiv. Experiment results show that DYLE outperforms all existing methods on GovReport and QMSum, with gains up to 6.1 ROUGE, while yielding strong results on arXiv. Further analysis shows that the proposed dynamic weights provide interpretability of our generation process.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2582898347</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2582898347</sourcerecordid><originalsourceid>FETCH-proquest_journals_25828983473</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTwcIn0cbVScKnMS8zNTFbwSSxJzStRcK0oKUpMLsnMz1NIyy9ScEwqhvDLUhV88vPSdT3zCkpLFIJLc3MTizKrEkEKeRhY0xJzilN5oTQ3g7Kba4izh25BUX5haWpxSXxWfmlRHlAq3sjUwsjC0sLYxNyYOFUA-gA70g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2582898347</pqid></control><display><type>article</type><title>DYLE: Dynamic Latent Extraction for Abstractive Long-Input Summarization</title><source>Free E- Journals</source><creator>Mao, Ziming ; Chen Henry Wu ; Ni, Ansong ; Zhang, Yusen ; Zhang, Rui ; Yu, Tao ; Budhaditya Deb ; Zhu, Chenguang ; Awadallah, Ahmed H ; Radev, Dragomir</creator><creatorcontrib>Mao, Ziming ; Chen Henry Wu ; Ni, Ansong ; Zhang, Yusen ; Zhang, Rui ; Yu, Tao ; Budhaditya Deb ; Zhu, Chenguang ; Awadallah, Ahmed H ; Radev, Dragomir</creatorcontrib><description>Transformer-based models have achieved state-of-the-art performance on short-input summarization. However, they still struggle with summarizing longer text. In this paper, we present DYLE, a novel dynamic latent extraction approach for abstractive long-input summarization. DYLE jointly trains an extractor and a generator and treats the extracted text snippets as the latent variable, allowing dynamic snippet-level attention weights during decoding. To provide adequate supervision, we propose simple yet effective heuristics for oracle extraction as well as a consistency loss term, which encourages the extractor to approximate the averaged dynamic weights predicted by the generator. We evaluate our method on different long-document and long-dialogue summarization tasks: GovReport, QMSum, and arXiv. Experiment results show that DYLE outperforms all existing methods on GovReport and QMSum, with gains up to 6.1 ROUGE, while yielding strong results on arXiv. Further analysis shows that the proposed dynamic weights provide interpretability of our generation process.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><ispartof>arXiv.org, 2022-04</ispartof><rights>2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Mao, Ziming</creatorcontrib><creatorcontrib>Chen Henry Wu</creatorcontrib><creatorcontrib>Ni, Ansong</creatorcontrib><creatorcontrib>Zhang, Yusen</creatorcontrib><creatorcontrib>Zhang, Rui</creatorcontrib><creatorcontrib>Yu, Tao</creatorcontrib><creatorcontrib>Budhaditya Deb</creatorcontrib><creatorcontrib>Zhu, Chenguang</creatorcontrib><creatorcontrib>Awadallah, Ahmed H</creatorcontrib><creatorcontrib>Radev, Dragomir</creatorcontrib><title>DYLE: Dynamic Latent Extraction for Abstractive Long-Input Summarization</title><title>arXiv.org</title><description>Transformer-based models have achieved state-of-the-art performance on short-input summarization. However, they still struggle with summarizing longer text. In this paper, we present DYLE, a novel dynamic latent extraction approach for abstractive long-input summarization. DYLE jointly trains an extractor and a generator and treats the extracted text snippets as the latent variable, allowing dynamic snippet-level attention weights during decoding. To provide adequate supervision, we propose simple yet effective heuristics for oracle extraction as well as a consistency loss term, which encourages the extractor to approximate the averaged dynamic weights predicted by the generator. We evaluate our method on different long-document and long-dialogue summarization tasks: GovReport, QMSum, and arXiv. Experiment results show that DYLE outperforms all existing methods on GovReport and QMSum, with gains up to 6.1 ROUGE, while yielding strong results on arXiv. Further analysis shows that the proposed dynamic weights provide interpretability of our generation process.</description><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTwcIn0cbVScKnMS8zNTFbwSSxJzStRcK0oKUpMLsnMz1NIyy9ScEwqhvDLUhV88vPSdT3zCkpLFIJLc3MTizKrEkEKeRhY0xJzilN5oTQ3g7Kba4izh25BUX5haWpxSXxWfmlRHlAq3sjUwsjC0sLYxNyYOFUA-gA70g</recordid><startdate>20220424</startdate><enddate>20220424</enddate><creator>Mao, Ziming</creator><creator>Chen Henry Wu</creator><creator>Ni, Ansong</creator><creator>Zhang, Yusen</creator><creator>Zhang, Rui</creator><creator>Yu, Tao</creator><creator>Budhaditya Deb</creator><creator>Zhu, Chenguang</creator><creator>Awadallah, Ahmed H</creator><creator>Radev, Dragomir</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220424</creationdate><title>DYLE: Dynamic Latent Extraction for Abstractive Long-Input Summarization</title><author>Mao, Ziming ; Chen Henry Wu ; Ni, Ansong ; Zhang, Yusen ; Zhang, Rui ; Yu, Tao ; Budhaditya Deb ; Zhu, Chenguang ; Awadallah, Ahmed H ; Radev, Dragomir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25828983473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Mao, Ziming</creatorcontrib><creatorcontrib>Chen Henry Wu</creatorcontrib><creatorcontrib>Ni, Ansong</creatorcontrib><creatorcontrib>Zhang, Yusen</creatorcontrib><creatorcontrib>Zhang, Rui</creatorcontrib><creatorcontrib>Yu, Tao</creatorcontrib><creatorcontrib>Budhaditya Deb</creatorcontrib><creatorcontrib>Zhu, Chenguang</creatorcontrib><creatorcontrib>Awadallah, Ahmed H</creatorcontrib><creatorcontrib>Radev, Dragomir</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mao, Ziming</au><au>Chen Henry Wu</au><au>Ni, Ansong</au><au>Zhang, Yusen</au><au>Zhang, Rui</au><au>Yu, Tao</au><au>Budhaditya Deb</au><au>Zhu, Chenguang</au><au>Awadallah, Ahmed H</au><au>Radev, Dragomir</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>DYLE: Dynamic Latent Extraction for Abstractive Long-Input Summarization</atitle><jtitle>arXiv.org</jtitle><date>2022-04-24</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>Transformer-based models have achieved state-of-the-art performance on short-input summarization. However, they still struggle with summarizing longer text. In this paper, we present DYLE, a novel dynamic latent extraction approach for abstractive long-input summarization. DYLE jointly trains an extractor and a generator and treats the extracted text snippets as the latent variable, allowing dynamic snippet-level attention weights during decoding. To provide adequate supervision, we propose simple yet effective heuristics for oracle extraction as well as a consistency loss term, which encourages the extractor to approximate the averaged dynamic weights predicted by the generator. We evaluate our method on different long-document and long-dialogue summarization tasks: GovReport, QMSum, and arXiv. Experiment results show that DYLE outperforms all existing methods on GovReport and QMSum, with gains up to 6.1 ROUGE, while yielding strong results on arXiv. Further analysis shows that the proposed dynamic weights provide interpretability of our generation process.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-04
issn 2331-8422
language eng
recordid cdi_proquest_journals_2582898347
source Free E- Journals
title DYLE: Dynamic Latent Extraction for Abstractive Long-Input Summarization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T01%3A00%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=DYLE:%20Dynamic%20Latent%20Extraction%20for%20Abstractive%20Long-Input%20Summarization&rft.jtitle=arXiv.org&rft.au=Mao,%20Ziming&rft.date=2022-04-24&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2582898347%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2582898347&rft_id=info:pmid/&rfr_iscdi=true