PCA-based dimensionality reduction for face recognition
In this paper, we conduct a comprehensive study on dimensionality reduction (DR) techniques and discuss the mostly used statistical DR technique called principal component analysis (PCA) in detail with a view to addressing the classical face recognition problem. Therefore, we, more devotedly, propos...
Gespeichert in:
Veröffentlicht in: | Telkomnika 2021-10, Vol.19 (5), p.1622-1629 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1629 |
---|---|
container_issue | 5 |
container_start_page | 1622 |
container_title | Telkomnika |
container_volume | 19 |
creator | Marjan, Md. Abu Islam, Md. Rashedul Uddin, Md. Palash Afjal, Masud Ibn Mamun, Md. Al |
description | In this paper, we conduct a comprehensive study on dimensionality reduction (DR) techniques and discuss the mostly used statistical DR technique called principal component analysis (PCA) in detail with a view to addressing the classical face recognition problem. Therefore, we, more devotedly, propose a solution to either a typical face or individual face recognition based on the principal components, which are constructed using PCA on the face images. We simulate the proposed solution with several training and test sets of manually captured face images and also with the popular Olivetti Research Laboratory (ORL) and Yale face databases. The performance measure of the proposed face recognizer signifies its superiority. |
doi_str_mv | 10.12928/telkomnika.v19i5.19566 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2582833627</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2582833627</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2496-2810daa4bf149cdc029f1d76ba0b7367ce4670f2b64474872b4a97134fd573913</originalsourceid><addsrcrecordid>eNpFkFtLAzEQhYMoWGp_gws-75pMsrk8luINCvqgzyGbi6SXTU12hf5711ZwYBjmcDgcPoRuCW4IKJD3g99t076PW9N8ExXbhqiW8ws0A4qhVqDoJZoRrmg9Lb5Gi1I2eBqBoVVyhsTball3pnhXubj3fYmpN7s4HKvs3WiH6a1CylUw1k-STZ99_BVv0FUwu-IXf3eOPh4f3lfP9fr16WW1XNcWmOI1SIKdMawLhCnrLAYViBO8M7gTlAvrGRc4QMcZE0wK6JhRglAWXCuoInSO7s65h5y-Rl8GvUljnioWDa0ESSkHMbnE2WVzKiX7oA857k0-aoL1CZT-B6VPoPQJFP0BtoRehg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2582833627</pqid></control><display><type>article</type><title>PCA-based dimensionality reduction for face recognition</title><source>Free E-Journal (出版社公開部分のみ)</source><creator>Marjan, Md. Abu ; Islam, Md. Rashedul ; Uddin, Md. Palash ; Afjal, Masud Ibn ; Mamun, Md. Al</creator><creatorcontrib>Marjan, Md. Abu ; Islam, Md. Rashedul ; Uddin, Md. Palash ; Afjal, Masud Ibn ; Mamun, Md. Al</creatorcontrib><description>In this paper, we conduct a comprehensive study on dimensionality reduction (DR) techniques and discuss the mostly used statistical DR technique called principal component analysis (PCA) in detail with a view to addressing the classical face recognition problem. Therefore, we, more devotedly, propose a solution to either a typical face or individual face recognition based on the principal components, which are constructed using PCA on the face images. We simulate the proposed solution with several training and test sets of manually captured face images and also with the popular Olivetti Research Laboratory (ORL) and Yale face databases. The performance measure of the proposed face recognizer signifies its superiority.</description><identifier>ISSN: 1693-6930</identifier><identifier>EISSN: 2302-9293</identifier><identifier>DOI: 10.12928/telkomnika.v19i5.19566</identifier><language>eng</language><publisher>Yogyakarta: Ahmad Dahlan University</publisher><subject>Data mining ; Datasets ; Direct reduction ; Discriminant analysis ; Face recognition ; Feature selection ; Laboratories ; Machine learning ; Methods ; Principal components analysis ; Variables ; Visualization</subject><ispartof>Telkomnika, 2021-10, Vol.19 (5), p.1622-1629</ispartof><rights>2021. This work is published under https://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2496-2810daa4bf149cdc029f1d76ba0b7367ce4670f2b64474872b4a97134fd573913</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Marjan, Md. Abu</creatorcontrib><creatorcontrib>Islam, Md. Rashedul</creatorcontrib><creatorcontrib>Uddin, Md. Palash</creatorcontrib><creatorcontrib>Afjal, Masud Ibn</creatorcontrib><creatorcontrib>Mamun, Md. Al</creatorcontrib><title>PCA-based dimensionality reduction for face recognition</title><title>Telkomnika</title><description>In this paper, we conduct a comprehensive study on dimensionality reduction (DR) techniques and discuss the mostly used statistical DR technique called principal component analysis (PCA) in detail with a view to addressing the classical face recognition problem. Therefore, we, more devotedly, propose a solution to either a typical face or individual face recognition based on the principal components, which are constructed using PCA on the face images. We simulate the proposed solution with several training and test sets of manually captured face images and also with the popular Olivetti Research Laboratory (ORL) and Yale face databases. The performance measure of the proposed face recognizer signifies its superiority.</description><subject>Data mining</subject><subject>Datasets</subject><subject>Direct reduction</subject><subject>Discriminant analysis</subject><subject>Face recognition</subject><subject>Feature selection</subject><subject>Laboratories</subject><subject>Machine learning</subject><subject>Methods</subject><subject>Principal components analysis</subject><subject>Variables</subject><subject>Visualization</subject><issn>1693-6930</issn><issn>2302-9293</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpFkFtLAzEQhYMoWGp_gws-75pMsrk8luINCvqgzyGbi6SXTU12hf5711ZwYBjmcDgcPoRuCW4IKJD3g99t076PW9N8ExXbhqiW8ws0A4qhVqDoJZoRrmg9Lb5Gi1I2eBqBoVVyhsTball3pnhXubj3fYmpN7s4HKvs3WiH6a1CylUw1k-STZ99_BVv0FUwu-IXf3eOPh4f3lfP9fr16WW1XNcWmOI1SIKdMawLhCnrLAYViBO8M7gTlAvrGRc4QMcZE0wK6JhRglAWXCuoInSO7s65h5y-Rl8GvUljnioWDa0ESSkHMbnE2WVzKiX7oA857k0-aoL1CZT-B6VPoPQJFP0BtoRehg</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Marjan, Md. Abu</creator><creator>Islam, Md. Rashedul</creator><creator>Uddin, Md. Palash</creator><creator>Afjal, Masud Ibn</creator><creator>Mamun, Md. Al</creator><general>Ahmad Dahlan University</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BVBZV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20211001</creationdate><title>PCA-based dimensionality reduction for face recognition</title><author>Marjan, Md. Abu ; Islam, Md. Rashedul ; Uddin, Md. Palash ; Afjal, Masud Ibn ; Mamun, Md. Al</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2496-2810daa4bf149cdc029f1d76ba0b7367ce4670f2b64474872b4a97134fd573913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Data mining</topic><topic>Datasets</topic><topic>Direct reduction</topic><topic>Discriminant analysis</topic><topic>Face recognition</topic><topic>Feature selection</topic><topic>Laboratories</topic><topic>Machine learning</topic><topic>Methods</topic><topic>Principal components analysis</topic><topic>Variables</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marjan, Md. Abu</creatorcontrib><creatorcontrib>Islam, Md. Rashedul</creatorcontrib><creatorcontrib>Uddin, Md. Palash</creatorcontrib><creatorcontrib>Afjal, Masud Ibn</creatorcontrib><creatorcontrib>Mamun, Md. Al</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>East & South Asia Database</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Telkomnika</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marjan, Md. Abu</au><au>Islam, Md. Rashedul</au><au>Uddin, Md. Palash</au><au>Afjal, Masud Ibn</au><au>Mamun, Md. Al</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PCA-based dimensionality reduction for face recognition</atitle><jtitle>Telkomnika</jtitle><date>2021-10-01</date><risdate>2021</risdate><volume>19</volume><issue>5</issue><spage>1622</spage><epage>1629</epage><pages>1622-1629</pages><issn>1693-6930</issn><eissn>2302-9293</eissn><abstract>In this paper, we conduct a comprehensive study on dimensionality reduction (DR) techniques and discuss the mostly used statistical DR technique called principal component analysis (PCA) in detail with a view to addressing the classical face recognition problem. Therefore, we, more devotedly, propose a solution to either a typical face or individual face recognition based on the principal components, which are constructed using PCA on the face images. We simulate the proposed solution with several training and test sets of manually captured face images and also with the popular Olivetti Research Laboratory (ORL) and Yale face databases. The performance measure of the proposed face recognizer signifies its superiority.</abstract><cop>Yogyakarta</cop><pub>Ahmad Dahlan University</pub><doi>10.12928/telkomnika.v19i5.19566</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1693-6930 |
ispartof | Telkomnika, 2021-10, Vol.19 (5), p.1622-1629 |
issn | 1693-6930 2302-9293 |
language | eng |
recordid | cdi_proquest_journals_2582833627 |
source | Free E-Journal (出版社公開部分のみ) |
subjects | Data mining Datasets Direct reduction Discriminant analysis Face recognition Feature selection Laboratories Machine learning Methods Principal components analysis Variables Visualization |
title | PCA-based dimensionality reduction for face recognition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T06%3A39%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PCA-based%20dimensionality%20reduction%20for%20face%20recognition&rft.jtitle=Telkomnika&rft.au=Marjan,%20Md.%20Abu&rft.date=2021-10-01&rft.volume=19&rft.issue=5&rft.spage=1622&rft.epage=1629&rft.pages=1622-1629&rft.issn=1693-6930&rft.eissn=2302-9293&rft_id=info:doi/10.12928/telkomnika.v19i5.19566&rft_dat=%3Cproquest_cross%3E2582833627%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2582833627&rft_id=info:pmid/&rfr_iscdi=true |