PCA-based dimensionality reduction for face recognition

In this paper, we conduct a comprehensive study on dimensionality reduction (DR) techniques and discuss the mostly used statistical DR technique called principal component analysis (PCA) in detail with a view to addressing the classical face recognition problem. Therefore, we, more devotedly, propos...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Telkomnika 2021-10, Vol.19 (5), p.1622-1629
Hauptverfasser: Marjan, Md. Abu, Islam, Md. Rashedul, Uddin, Md. Palash, Afjal, Masud Ibn, Mamun, Md. Al
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1629
container_issue 5
container_start_page 1622
container_title Telkomnika
container_volume 19
creator Marjan, Md. Abu
Islam, Md. Rashedul
Uddin, Md. Palash
Afjal, Masud Ibn
Mamun, Md. Al
description In this paper, we conduct a comprehensive study on dimensionality reduction (DR) techniques and discuss the mostly used statistical DR technique called principal component analysis (PCA) in detail with a view to addressing the classical face recognition problem. Therefore, we, more devotedly, propose a solution to either a typical face or individual face recognition based on the principal components, which are constructed using PCA on the face images. We simulate the proposed solution with several training and test sets of manually captured face images and also with the popular Olivetti Research Laboratory (ORL) and Yale face databases. The performance measure of the proposed face recognizer signifies its superiority.
doi_str_mv 10.12928/telkomnika.v19i5.19566
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2582833627</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2582833627</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2496-2810daa4bf149cdc029f1d76ba0b7367ce4670f2b64474872b4a97134fd573913</originalsourceid><addsrcrecordid>eNpFkFtLAzEQhYMoWGp_gws-75pMsrk8luINCvqgzyGbi6SXTU12hf5711ZwYBjmcDgcPoRuCW4IKJD3g99t076PW9N8ExXbhqiW8ws0A4qhVqDoJZoRrmg9Lb5Gi1I2eBqBoVVyhsTball3pnhXubj3fYmpN7s4HKvs3WiH6a1CylUw1k-STZ99_BVv0FUwu-IXf3eOPh4f3lfP9fr16WW1XNcWmOI1SIKdMawLhCnrLAYViBO8M7gTlAvrGRc4QMcZE0wK6JhRglAWXCuoInSO7s65h5y-Rl8GvUljnioWDa0ESSkHMbnE2WVzKiX7oA857k0-aoL1CZT-B6VPoPQJFP0BtoRehg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2582833627</pqid></control><display><type>article</type><title>PCA-based dimensionality reduction for face recognition</title><source>Free E-Journal (出版社公開部分のみ)</source><creator>Marjan, Md. Abu ; Islam, Md. Rashedul ; Uddin, Md. Palash ; Afjal, Masud Ibn ; Mamun, Md. Al</creator><creatorcontrib>Marjan, Md. Abu ; Islam, Md. Rashedul ; Uddin, Md. Palash ; Afjal, Masud Ibn ; Mamun, Md. Al</creatorcontrib><description>In this paper, we conduct a comprehensive study on dimensionality reduction (DR) techniques and discuss the mostly used statistical DR technique called principal component analysis (PCA) in detail with a view to addressing the classical face recognition problem. Therefore, we, more devotedly, propose a solution to either a typical face or individual face recognition based on the principal components, which are constructed using PCA on the face images. We simulate the proposed solution with several training and test sets of manually captured face images and also with the popular Olivetti Research Laboratory (ORL) and Yale face databases. The performance measure of the proposed face recognizer signifies its superiority.</description><identifier>ISSN: 1693-6930</identifier><identifier>EISSN: 2302-9293</identifier><identifier>DOI: 10.12928/telkomnika.v19i5.19566</identifier><language>eng</language><publisher>Yogyakarta: Ahmad Dahlan University</publisher><subject>Data mining ; Datasets ; Direct reduction ; Discriminant analysis ; Face recognition ; Feature selection ; Laboratories ; Machine learning ; Methods ; Principal components analysis ; Variables ; Visualization</subject><ispartof>Telkomnika, 2021-10, Vol.19 (5), p.1622-1629</ispartof><rights>2021. This work is published under https://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2496-2810daa4bf149cdc029f1d76ba0b7367ce4670f2b64474872b4a97134fd573913</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Marjan, Md. Abu</creatorcontrib><creatorcontrib>Islam, Md. Rashedul</creatorcontrib><creatorcontrib>Uddin, Md. Palash</creatorcontrib><creatorcontrib>Afjal, Masud Ibn</creatorcontrib><creatorcontrib>Mamun, Md. Al</creatorcontrib><title>PCA-based dimensionality reduction for face recognition</title><title>Telkomnika</title><description>In this paper, we conduct a comprehensive study on dimensionality reduction (DR) techniques and discuss the mostly used statistical DR technique called principal component analysis (PCA) in detail with a view to addressing the classical face recognition problem. Therefore, we, more devotedly, propose a solution to either a typical face or individual face recognition based on the principal components, which are constructed using PCA on the face images. We simulate the proposed solution with several training and test sets of manually captured face images and also with the popular Olivetti Research Laboratory (ORL) and Yale face databases. The performance measure of the proposed face recognizer signifies its superiority.</description><subject>Data mining</subject><subject>Datasets</subject><subject>Direct reduction</subject><subject>Discriminant analysis</subject><subject>Face recognition</subject><subject>Feature selection</subject><subject>Laboratories</subject><subject>Machine learning</subject><subject>Methods</subject><subject>Principal components analysis</subject><subject>Variables</subject><subject>Visualization</subject><issn>1693-6930</issn><issn>2302-9293</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpFkFtLAzEQhYMoWGp_gws-75pMsrk8luINCvqgzyGbi6SXTU12hf5711ZwYBjmcDgcPoRuCW4IKJD3g99t076PW9N8ExXbhqiW8ws0A4qhVqDoJZoRrmg9Lb5Gi1I2eBqBoVVyhsTball3pnhXubj3fYmpN7s4HKvs3WiH6a1CylUw1k-STZ99_BVv0FUwu-IXf3eOPh4f3lfP9fr16WW1XNcWmOI1SIKdMawLhCnrLAYViBO8M7gTlAvrGRc4QMcZE0wK6JhRglAWXCuoInSO7s65h5y-Rl8GvUljnioWDa0ESSkHMbnE2WVzKiX7oA857k0-aoL1CZT-B6VPoPQJFP0BtoRehg</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Marjan, Md. Abu</creator><creator>Islam, Md. Rashedul</creator><creator>Uddin, Md. Palash</creator><creator>Afjal, Masud Ibn</creator><creator>Mamun, Md. Al</creator><general>Ahmad Dahlan University</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BVBZV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20211001</creationdate><title>PCA-based dimensionality reduction for face recognition</title><author>Marjan, Md. Abu ; Islam, Md. Rashedul ; Uddin, Md. Palash ; Afjal, Masud Ibn ; Mamun, Md. Al</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2496-2810daa4bf149cdc029f1d76ba0b7367ce4670f2b64474872b4a97134fd573913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Data mining</topic><topic>Datasets</topic><topic>Direct reduction</topic><topic>Discriminant analysis</topic><topic>Face recognition</topic><topic>Feature selection</topic><topic>Laboratories</topic><topic>Machine learning</topic><topic>Methods</topic><topic>Principal components analysis</topic><topic>Variables</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marjan, Md. Abu</creatorcontrib><creatorcontrib>Islam, Md. Rashedul</creatorcontrib><creatorcontrib>Uddin, Md. Palash</creatorcontrib><creatorcontrib>Afjal, Masud Ibn</creatorcontrib><creatorcontrib>Mamun, Md. Al</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>East &amp; South Asia Database</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Telkomnika</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marjan, Md. Abu</au><au>Islam, Md. Rashedul</au><au>Uddin, Md. Palash</au><au>Afjal, Masud Ibn</au><au>Mamun, Md. Al</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PCA-based dimensionality reduction for face recognition</atitle><jtitle>Telkomnika</jtitle><date>2021-10-01</date><risdate>2021</risdate><volume>19</volume><issue>5</issue><spage>1622</spage><epage>1629</epage><pages>1622-1629</pages><issn>1693-6930</issn><eissn>2302-9293</eissn><abstract>In this paper, we conduct a comprehensive study on dimensionality reduction (DR) techniques and discuss the mostly used statistical DR technique called principal component analysis (PCA) in detail with a view to addressing the classical face recognition problem. Therefore, we, more devotedly, propose a solution to either a typical face or individual face recognition based on the principal components, which are constructed using PCA on the face images. We simulate the proposed solution with several training and test sets of manually captured face images and also with the popular Olivetti Research Laboratory (ORL) and Yale face databases. The performance measure of the proposed face recognizer signifies its superiority.</abstract><cop>Yogyakarta</cop><pub>Ahmad Dahlan University</pub><doi>10.12928/telkomnika.v19i5.19566</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1693-6930
ispartof Telkomnika, 2021-10, Vol.19 (5), p.1622-1629
issn 1693-6930
2302-9293
language eng
recordid cdi_proquest_journals_2582833627
source Free E-Journal (出版社公開部分のみ)
subjects Data mining
Datasets
Direct reduction
Discriminant analysis
Face recognition
Feature selection
Laboratories
Machine learning
Methods
Principal components analysis
Variables
Visualization
title PCA-based dimensionality reduction for face recognition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T06%3A39%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PCA-based%20dimensionality%20reduction%20for%20face%20recognition&rft.jtitle=Telkomnika&rft.au=Marjan,%20Md.%20Abu&rft.date=2021-10-01&rft.volume=19&rft.issue=5&rft.spage=1622&rft.epage=1629&rft.pages=1622-1629&rft.issn=1693-6930&rft.eissn=2302-9293&rft_id=info:doi/10.12928/telkomnika.v19i5.19566&rft_dat=%3Cproquest_cross%3E2582833627%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2582833627&rft_id=info:pmid/&rfr_iscdi=true