PCA-based dimensionality reduction for face recognition

In this paper, we conduct a comprehensive study on dimensionality reduction (DR) techniques and discuss the mostly used statistical DR technique called principal component analysis (PCA) in detail with a view to addressing the classical face recognition problem. Therefore, we, more devotedly, propos...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Telkomnika 2021-10, Vol.19 (5), p.1622-1629
Hauptverfasser: Marjan, Md. Abu, Islam, Md. Rashedul, Uddin, Md. Palash, Afjal, Masud Ibn, Mamun, Md. Al
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we conduct a comprehensive study on dimensionality reduction (DR) techniques and discuss the mostly used statistical DR technique called principal component analysis (PCA) in detail with a view to addressing the classical face recognition problem. Therefore, we, more devotedly, propose a solution to either a typical face or individual face recognition based on the principal components, which are constructed using PCA on the face images. We simulate the proposed solution with several training and test sets of manually captured face images and also with the popular Olivetti Research Laboratory (ORL) and Yale face databases. The performance measure of the proposed face recognizer signifies its superiority.
ISSN:1693-6930
2302-9293
DOI:10.12928/telkomnika.v19i5.19566