Accurate total energies from the adiabatic-connection fluctuation-dissipation theorem
In the context of inhomogeneous one-dimensional finite systems, recent numerical advances [Phys. Rev. B 103, 125155 (2021)] allow us to compute the exact coupling-constant dependent exchange-correlation kernel ...within linear response time-dependent density-functional theory. This permits an improv...
Gespeichert in:
Veröffentlicht in: | Physical review. B 2021-09, Vol.104 (12), p.1, Article 125126 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 12 |
container_start_page | 1 |
container_title | Physical review. B |
container_volume | 104 |
creator | Woods, N. D. Entwistle, M. T. Godby, R. W. |
description | In the context of inhomogeneous one-dimensional finite systems, recent numerical advances [Phys. Rev. B 103, 125155 (2021)] allow us to compute the exact coupling-constant dependent exchange-correlation kernel ...within linear response time-dependent density-functional theory. This permits an improved understanding of ground-state total energies derived from the adiabatic-connection fluctuation-dissipation theorem (ACFDT). We consider both one-shot and self-consistent ACFDT calculations, and demonstrate that chemical accuracy is reliably preserved when the frequency dependence in the exact functional fxc [n] (ω = 0) is neglected. This performance is understood on the grounds that the exact f xc [n] varies slowly over the most relevant ω range (but not in general), and hence the spatial structure in fxc [n] (ω = 0) is able to largely remedy the principal issue in the present context: self-interaction (examined from the perspective of the exchange-correlation hole). Moreover, we find that the implicit orbitals contained within a self-consistent ACFDT calculation utilizing the adiabatic exact kernel fxc [n] (ω = 0) are remarkably similar to the exact Kohn-Sham orbitals, thus further establishing that the majority of the physics required to capture the ground-state total energy resides in the spatial dependence of fxc [n] at ω = 0 .(ProQuest: … denotes formulae omitted.) |
doi_str_mv | 10.1103/PhysRevB.104.125126 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2582833123</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2582833123</sourcerecordid><originalsourceid>FETCH-LOGICAL-c277t-7c8b9793d9999cd92416a085722c88005a174aae70af672f6862505b4d570c7e3</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWGp_gZcFz1snyebrWItfUFDEnkOazdqU7aYmWaH_3l2rzmUehndm4EHoGsMcY6C3r9tjenNfd3MM1RwThgk_QxNScVUqxdX5PzO4RLOUdgCAOSgBaoLWC2v7aLIrcsimLVzn4od3qWhi2Bd56wpTe7Mx2dvShq5zNvvQFU3b29ybkcvap-QPPzwuhOj2V-iiMW1ys98-ReuH-_flU7l6eXxeLlalJULkUli5UULRWg1la0UqzA1IJgixUgIwg0VljBNgGi5IwyUnDNimqpkAKxydopvT3UMMn71LWe9CH7vhpSZMEkkpJnRI0VPKxpBSdI0-RL838agx6FGh_lM4DCp9Uki_AcXtZkw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2582833123</pqid></control><display><type>article</type><title>Accurate total energies from the adiabatic-connection fluctuation-dissipation theorem</title><source>American Physical Society Journals</source><creator>Woods, N. D. ; Entwistle, M. T. ; Godby, R. W.</creator><creatorcontrib>Woods, N. D. ; Entwistle, M. T. ; Godby, R. W.</creatorcontrib><description>In the context of inhomogeneous one-dimensional finite systems, recent numerical advances [Phys. Rev. B 103, 125155 (2021)] allow us to compute the exact coupling-constant dependent exchange-correlation kernel ...within linear response time-dependent density-functional theory. This permits an improved understanding of ground-state total energies derived from the adiabatic-connection fluctuation-dissipation theorem (ACFDT). We consider both one-shot and self-consistent ACFDT calculations, and demonstrate that chemical accuracy is reliably preserved when the frequency dependence in the exact functional fxc [n] (ω = 0) is neglected. This performance is understood on the grounds that the exact f xc [n] varies slowly over the most relevant ω range (but not in general), and hence the spatial structure in fxc [n] (ω = 0) is able to largely remedy the principal issue in the present context: self-interaction (examined from the perspective of the exchange-correlation hole). Moreover, we find that the implicit orbitals contained within a self-consistent ACFDT calculation utilizing the adiabatic exact kernel fxc [n] (ω = 0) are remarkably similar to the exact Kohn-Sham orbitals, thus further establishing that the majority of the physics required to capture the ground-state total energy resides in the spatial dependence of fxc [n] at ω = 0 .(ProQuest: … denotes formulae omitted.)</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.104.125126</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Adiabatic flow ; Context ; Density functional theory ; Kernels ; Mathematical analysis ; Orbitals ; Response time (computers) ; Theorems</subject><ispartof>Physical review. B, 2021-09, Vol.104 (12), p.1, Article 125126</ispartof><rights>Copyright American Physical Society Sep 15, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c277t-7c8b9793d9999cd92416a085722c88005a174aae70af672f6862505b4d570c7e3</citedby><cites>FETCH-LOGICAL-c277t-7c8b9793d9999cd92416a085722c88005a174aae70af672f6862505b4d570c7e3</cites><orcidid>0000-0002-5913-2206 ; 0000-0002-1012-4176 ; 0000-0001-8049-8563</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2876,2877,27924,27925</link.rule.ids></links><search><creatorcontrib>Woods, N. D.</creatorcontrib><creatorcontrib>Entwistle, M. T.</creatorcontrib><creatorcontrib>Godby, R. W.</creatorcontrib><title>Accurate total energies from the adiabatic-connection fluctuation-dissipation theorem</title><title>Physical review. B</title><description>In the context of inhomogeneous one-dimensional finite systems, recent numerical advances [Phys. Rev. B 103, 125155 (2021)] allow us to compute the exact coupling-constant dependent exchange-correlation kernel ...within linear response time-dependent density-functional theory. This permits an improved understanding of ground-state total energies derived from the adiabatic-connection fluctuation-dissipation theorem (ACFDT). We consider both one-shot and self-consistent ACFDT calculations, and demonstrate that chemical accuracy is reliably preserved when the frequency dependence in the exact functional fxc [n] (ω = 0) is neglected. This performance is understood on the grounds that the exact f xc [n] varies slowly over the most relevant ω range (but not in general), and hence the spatial structure in fxc [n] (ω = 0) is able to largely remedy the principal issue in the present context: self-interaction (examined from the perspective of the exchange-correlation hole). Moreover, we find that the implicit orbitals contained within a self-consistent ACFDT calculation utilizing the adiabatic exact kernel fxc [n] (ω = 0) are remarkably similar to the exact Kohn-Sham orbitals, thus further establishing that the majority of the physics required to capture the ground-state total energy resides in the spatial dependence of fxc [n] at ω = 0 .(ProQuest: … denotes formulae omitted.)</description><subject>Adiabatic flow</subject><subject>Context</subject><subject>Density functional theory</subject><subject>Kernels</subject><subject>Mathematical analysis</subject><subject>Orbitals</subject><subject>Response time (computers)</subject><subject>Theorems</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEQhoMoWGp_gZcFz1snyebrWItfUFDEnkOazdqU7aYmWaH_3l2rzmUehndm4EHoGsMcY6C3r9tjenNfd3MM1RwThgk_QxNScVUqxdX5PzO4RLOUdgCAOSgBaoLWC2v7aLIrcsimLVzn4od3qWhi2Bd56wpTe7Mx2dvShq5zNvvQFU3b29ybkcvap-QPPzwuhOj2V-iiMW1ys98-ReuH-_flU7l6eXxeLlalJULkUli5UULRWg1la0UqzA1IJgixUgIwg0VljBNgGi5IwyUnDNimqpkAKxydopvT3UMMn71LWe9CH7vhpSZMEkkpJnRI0VPKxpBSdI0-RL838agx6FGh_lM4DCp9Uki_AcXtZkw</recordid><startdate>20210915</startdate><enddate>20210915</enddate><creator>Woods, N. D.</creator><creator>Entwistle, M. T.</creator><creator>Godby, R. W.</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5913-2206</orcidid><orcidid>https://orcid.org/0000-0002-1012-4176</orcidid><orcidid>https://orcid.org/0000-0001-8049-8563</orcidid></search><sort><creationdate>20210915</creationdate><title>Accurate total energies from the adiabatic-connection fluctuation-dissipation theorem</title><author>Woods, N. D. ; Entwistle, M. T. ; Godby, R. W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c277t-7c8b9793d9999cd92416a085722c88005a174aae70af672f6862505b4d570c7e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adiabatic flow</topic><topic>Context</topic><topic>Density functional theory</topic><topic>Kernels</topic><topic>Mathematical analysis</topic><topic>Orbitals</topic><topic>Response time (computers)</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Woods, N. D.</creatorcontrib><creatorcontrib>Entwistle, M. T.</creatorcontrib><creatorcontrib>Godby, R. W.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Woods, N. D.</au><au>Entwistle, M. T.</au><au>Godby, R. W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accurate total energies from the adiabatic-connection fluctuation-dissipation theorem</atitle><jtitle>Physical review. B</jtitle><date>2021-09-15</date><risdate>2021</risdate><volume>104</volume><issue>12</issue><spage>1</spage><pages>1-</pages><artnum>125126</artnum><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>In the context of inhomogeneous one-dimensional finite systems, recent numerical advances [Phys. Rev. B 103, 125155 (2021)] allow us to compute the exact coupling-constant dependent exchange-correlation kernel ...within linear response time-dependent density-functional theory. This permits an improved understanding of ground-state total energies derived from the adiabatic-connection fluctuation-dissipation theorem (ACFDT). We consider both one-shot and self-consistent ACFDT calculations, and demonstrate that chemical accuracy is reliably preserved when the frequency dependence in the exact functional fxc [n] (ω = 0) is neglected. This performance is understood on the grounds that the exact f xc [n] varies slowly over the most relevant ω range (but not in general), and hence the spatial structure in fxc [n] (ω = 0) is able to largely remedy the principal issue in the present context: self-interaction (examined from the perspective of the exchange-correlation hole). Moreover, we find that the implicit orbitals contained within a self-consistent ACFDT calculation utilizing the adiabatic exact kernel fxc [n] (ω = 0) are remarkably similar to the exact Kohn-Sham orbitals, thus further establishing that the majority of the physics required to capture the ground-state total energy resides in the spatial dependence of fxc [n] at ω = 0 .(ProQuest: … denotes formulae omitted.)</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevB.104.125126</doi><orcidid>https://orcid.org/0000-0002-5913-2206</orcidid><orcidid>https://orcid.org/0000-0002-1012-4176</orcidid><orcidid>https://orcid.org/0000-0001-8049-8563</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2469-9950 |
ispartof | Physical review. B, 2021-09, Vol.104 (12), p.1, Article 125126 |
issn | 2469-9950 2469-9969 |
language | eng |
recordid | cdi_proquest_journals_2582833123 |
source | American Physical Society Journals |
subjects | Adiabatic flow Context Density functional theory Kernels Mathematical analysis Orbitals Response time (computers) Theorems |
title | Accurate total energies from the adiabatic-connection fluctuation-dissipation theorem |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T03%3A22%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accurate%20total%20energies%20from%20the%20adiabatic-connection%20fluctuation-dissipation%20theorem&rft.jtitle=Physical%20review.%20B&rft.au=Woods,%20N.%20D.&rft.date=2021-09-15&rft.volume=104&rft.issue=12&rft.spage=1&rft.pages=1-&rft.artnum=125126&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.104.125126&rft_dat=%3Cproquest_cross%3E2582833123%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2582833123&rft_id=info:pmid/&rfr_iscdi=true |