Magnetic properties of BiFeO3 – BaTiO3 ceramics in the morphotropic phase boundary: A role of crystal structure and structural parameters
•The study describes the correlation between the type of lattice symmetry and structural parameters of the ceramic compounds (1-x)BiFeO3 -(x)BaTiO3 and the evolution of magnetic properties across the concentration driven structural transition from the rhombohedral to the cubic phase.•The obtained re...
Gespeichert in:
Veröffentlicht in: | Journal of magnetism and magnetic materials 2021-12, Vol.539, p.168409, Article 168409 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 168409 |
container_title | Journal of magnetism and magnetic materials |
container_volume | 539 |
creator | Karpinsky, D.V. Silibin, M.V. Zhaludkevich, D.V. Latushka, S.I. Sysa, A.V. Sikolenko, V.V. Zhaludkevich, A.L. Khomchenko, V.A. Franz, A. Mazeika, K. Baltrunas, D. Kareiva, A. |
description | •The study describes the correlation between the type of lattice symmetry and structural parameters of the ceramic compounds (1-x)BiFeO3 -(x)BaTiO3 and the evolution of magnetic properties across the concentration driven structural transition from the rhombohedral to the cubic phase.•The obtained results reveal specific role of the oxygen octahedra tilting as the key factor determining the presence of non-zero remanent magnetization.
A correlation between the crystal structure and magnetic properties of system (1-x)BiFeO3 – (x)BaTiO3 with compounds across the morphotropic phase boundary was studied using X-ray and neutron diffraction, magnetometry, and Mössbauer spectroscopy measurements. Increase in the dopants content leads to the structural transition from the rhombohedral phase to the cubic phase via a formation of the two-phase region (0.2 |
doi_str_mv | 10.1016/j.jmmm.2021.168409 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2582832622</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304885321006855</els_id><sourcerecordid>2582832622</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-c0240f7500f70e590243fdf988d90f455b51c1b26ff564603d073f307d7e977f3</originalsourceid><addsrcrecordid>eNp9kM9u3CAQxlHVSt2mfYGekHr2dgAb4yqXJMo_KVUu6RmxeOhirY0DOFJuvffYN-yTBGujHnsBPjG_b2Y-Qj4z2DJg8uuwHcZx3HLgbMukqqF7QzZMtaKqWynfkg0IqCulGvGefEhpAABWK7khv7-bnxNmb-kcw4wxe0w0OHrur_Be0L-__tBz8-DL02I0o7eJ-onmPdIxxHkfcqFWeG8S0l1Ypt7E52_0jMZwwNXIxueUzYGmHBebl4jUTP0_VT5mU3wxY0wfyTtnDgk_vd4n5MfV5cPFTXV3f317cXZXWcFVrizwGlzbQDkAm65I4XrXKdV34Oqm2TXMsh2XzjWyliB6aIUT0PYtdm3rxAn5cvQtKz8umLIewhKn0lLzRnEluOS8VPFjlY0hpYhOz9GPZTvNQK-h60Gvoes1dH0MvUCnRwjL_E8eo07W42Sx9xFt1n3w_8NfAC6EjG8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2582832622</pqid></control><display><type>article</type><title>Magnetic properties of BiFeO3 – BaTiO3 ceramics in the morphotropic phase boundary: A role of crystal structure and structural parameters</title><source>Elsevier ScienceDirect Journals</source><creator>Karpinsky, D.V. ; Silibin, M.V. ; Zhaludkevich, D.V. ; Latushka, S.I. ; Sysa, A.V. ; Sikolenko, V.V. ; Zhaludkevich, A.L. ; Khomchenko, V.A. ; Franz, A. ; Mazeika, K. ; Baltrunas, D. ; Kareiva, A.</creator><creatorcontrib>Karpinsky, D.V. ; Silibin, M.V. ; Zhaludkevich, D.V. ; Latushka, S.I. ; Sysa, A.V. ; Sikolenko, V.V. ; Zhaludkevich, A.L. ; Khomchenko, V.A. ; Franz, A. ; Mazeika, K. ; Baltrunas, D. ; Kareiva, A.</creatorcontrib><description>•The study describes the correlation between the type of lattice symmetry and structural parameters of the ceramic compounds (1-x)BiFeO3 -(x)BaTiO3 and the evolution of magnetic properties across the concentration driven structural transition from the rhombohedral to the cubic phase.•The obtained results reveal specific role of the oxygen octahedra tilting as the key factor determining the presence of non-zero remanent magnetization.
A correlation between the crystal structure and magnetic properties of system (1-x)BiFeO3 – (x)BaTiO3 with compounds across the morphotropic phase boundary was studied using X-ray and neutron diffraction, magnetometry, and Mössbauer spectroscopy measurements. Increase in the dopants content leads to the structural transition from the rhombohedral phase to the cubic phase via a formation of the two-phase region (0.2 < x < 0.33), wherein the magnetic structure changes from the modulated G-type antiferromagnetic to the collinear antiferromagnetic via a stabilization of the non-collinear antiferromagnetic phase with non-zero remanent magnetization. The value of magnetic moment calculated per iron ion based on the Mössbauer and neutron diffraction data decreases from m≈4.4μB for the compound with x = 0.25 to m = 3.2μB for the compound with x = 0.35 testifying a dominance of 3 + oxidation state of the iron ions. Increase in the amount of the cubic phase leads to a reduction in the remanent magnetization from 0.02 emu/g for the compounds with the dominant rhombohedral phase (x < 0.27) down to about 0.001 emu/g for the compounds with dominant cubic structure (x ≥ 0.27). Rapid decrease in the remanent magnetization observed in the compounds across the phase coexistence region points at no direct correlation between the type of structural distortion and non-zero remanent magnetization, while the oxygen octahedra tilting is the key factor determining the presence of non-zero remanent magnetization.</description><identifier>ISSN: 0304-8853</identifier><identifier>EISSN: 1873-4766</identifier><identifier>DOI: 10.1016/j.jmmm.2021.168409</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Antiferromagnetism ; Barium titanates ; Crystal structure ; Diffraction ; Iron ; Magnetic measurement ; Magnetic moments ; Magnetic properties ; Magnetic structure ; Magnetism ; Magnetization ; Magnetometry ; Mossbauer spectroscopy ; Multiferroics ; Neutron diffraction ; Oxidation ; Phase boundaries ; Phase transition ; Valence</subject><ispartof>Journal of magnetism and magnetic materials, 2021-12, Vol.539, p.168409, Article 168409</ispartof><rights>2021 Elsevier B.V.</rights><rights>Copyright Elsevier BV Dec 1, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-c0240f7500f70e590243fdf988d90f455b51c1b26ff564603d073f307d7e977f3</citedby><cites>FETCH-LOGICAL-c328t-c0240f7500f70e590243fdf988d90f455b51c1b26ff564603d073f307d7e977f3</cites><orcidid>0000-0002-5010-7071 ; 0000-0002-1046-543X ; 0000-0003-4792-8650 ; 0000-0001-5252-6870</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jmmm.2021.168409$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Karpinsky, D.V.</creatorcontrib><creatorcontrib>Silibin, M.V.</creatorcontrib><creatorcontrib>Zhaludkevich, D.V.</creatorcontrib><creatorcontrib>Latushka, S.I.</creatorcontrib><creatorcontrib>Sysa, A.V.</creatorcontrib><creatorcontrib>Sikolenko, V.V.</creatorcontrib><creatorcontrib>Zhaludkevich, A.L.</creatorcontrib><creatorcontrib>Khomchenko, V.A.</creatorcontrib><creatorcontrib>Franz, A.</creatorcontrib><creatorcontrib>Mazeika, K.</creatorcontrib><creatorcontrib>Baltrunas, D.</creatorcontrib><creatorcontrib>Kareiva, A.</creatorcontrib><title>Magnetic properties of BiFeO3 – BaTiO3 ceramics in the morphotropic phase boundary: A role of crystal structure and structural parameters</title><title>Journal of magnetism and magnetic materials</title><description>•The study describes the correlation between the type of lattice symmetry and structural parameters of the ceramic compounds (1-x)BiFeO3 -(x)BaTiO3 and the evolution of magnetic properties across the concentration driven structural transition from the rhombohedral to the cubic phase.•The obtained results reveal specific role of the oxygen octahedra tilting as the key factor determining the presence of non-zero remanent magnetization.
A correlation between the crystal structure and magnetic properties of system (1-x)BiFeO3 – (x)BaTiO3 with compounds across the morphotropic phase boundary was studied using X-ray and neutron diffraction, magnetometry, and Mössbauer spectroscopy measurements. Increase in the dopants content leads to the structural transition from the rhombohedral phase to the cubic phase via a formation of the two-phase region (0.2 < x < 0.33), wherein the magnetic structure changes from the modulated G-type antiferromagnetic to the collinear antiferromagnetic via a stabilization of the non-collinear antiferromagnetic phase with non-zero remanent magnetization. The value of magnetic moment calculated per iron ion based on the Mössbauer and neutron diffraction data decreases from m≈4.4μB for the compound with x = 0.25 to m = 3.2μB for the compound with x = 0.35 testifying a dominance of 3 + oxidation state of the iron ions. Increase in the amount of the cubic phase leads to a reduction in the remanent magnetization from 0.02 emu/g for the compounds with the dominant rhombohedral phase (x < 0.27) down to about 0.001 emu/g for the compounds with dominant cubic structure (x ≥ 0.27). Rapid decrease in the remanent magnetization observed in the compounds across the phase coexistence region points at no direct correlation between the type of structural distortion and non-zero remanent magnetization, while the oxygen octahedra tilting is the key factor determining the presence of non-zero remanent magnetization.</description><subject>Antiferromagnetism</subject><subject>Barium titanates</subject><subject>Crystal structure</subject><subject>Diffraction</subject><subject>Iron</subject><subject>Magnetic measurement</subject><subject>Magnetic moments</subject><subject>Magnetic properties</subject><subject>Magnetic structure</subject><subject>Magnetism</subject><subject>Magnetization</subject><subject>Magnetometry</subject><subject>Mossbauer spectroscopy</subject><subject>Multiferroics</subject><subject>Neutron diffraction</subject><subject>Oxidation</subject><subject>Phase boundaries</subject><subject>Phase transition</subject><subject>Valence</subject><issn>0304-8853</issn><issn>1873-4766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kM9u3CAQxlHVSt2mfYGekHr2dgAb4yqXJMo_KVUu6RmxeOhirY0DOFJuvffYN-yTBGujHnsBPjG_b2Y-Qj4z2DJg8uuwHcZx3HLgbMukqqF7QzZMtaKqWynfkg0IqCulGvGefEhpAABWK7khv7-bnxNmb-kcw4wxe0w0OHrur_Be0L-__tBz8-DL02I0o7eJ-onmPdIxxHkfcqFWeG8S0l1Ypt7E52_0jMZwwNXIxueUzYGmHBebl4jUTP0_VT5mU3wxY0wfyTtnDgk_vd4n5MfV5cPFTXV3f317cXZXWcFVrizwGlzbQDkAm65I4XrXKdV34Oqm2TXMsh2XzjWyliB6aIUT0PYtdm3rxAn5cvQtKz8umLIewhKn0lLzRnEluOS8VPFjlY0hpYhOz9GPZTvNQK-h60Gvoes1dH0MvUCnRwjL_E8eo07W42Sx9xFt1n3w_8NfAC6EjG8</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Karpinsky, D.V.</creator><creator>Silibin, M.V.</creator><creator>Zhaludkevich, D.V.</creator><creator>Latushka, S.I.</creator><creator>Sysa, A.V.</creator><creator>Sikolenko, V.V.</creator><creator>Zhaludkevich, A.L.</creator><creator>Khomchenko, V.A.</creator><creator>Franz, A.</creator><creator>Mazeika, K.</creator><creator>Baltrunas, D.</creator><creator>Kareiva, A.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5010-7071</orcidid><orcidid>https://orcid.org/0000-0002-1046-543X</orcidid><orcidid>https://orcid.org/0000-0003-4792-8650</orcidid><orcidid>https://orcid.org/0000-0001-5252-6870</orcidid></search><sort><creationdate>20211201</creationdate><title>Magnetic properties of BiFeO3 – BaTiO3 ceramics in the morphotropic phase boundary: A role of crystal structure and structural parameters</title><author>Karpinsky, D.V. ; Silibin, M.V. ; Zhaludkevich, D.V. ; Latushka, S.I. ; Sysa, A.V. ; Sikolenko, V.V. ; Zhaludkevich, A.L. ; Khomchenko, V.A. ; Franz, A. ; Mazeika, K. ; Baltrunas, D. ; Kareiva, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-c0240f7500f70e590243fdf988d90f455b51c1b26ff564603d073f307d7e977f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Antiferromagnetism</topic><topic>Barium titanates</topic><topic>Crystal structure</topic><topic>Diffraction</topic><topic>Iron</topic><topic>Magnetic measurement</topic><topic>Magnetic moments</topic><topic>Magnetic properties</topic><topic>Magnetic structure</topic><topic>Magnetism</topic><topic>Magnetization</topic><topic>Magnetometry</topic><topic>Mossbauer spectroscopy</topic><topic>Multiferroics</topic><topic>Neutron diffraction</topic><topic>Oxidation</topic><topic>Phase boundaries</topic><topic>Phase transition</topic><topic>Valence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karpinsky, D.V.</creatorcontrib><creatorcontrib>Silibin, M.V.</creatorcontrib><creatorcontrib>Zhaludkevich, D.V.</creatorcontrib><creatorcontrib>Latushka, S.I.</creatorcontrib><creatorcontrib>Sysa, A.V.</creatorcontrib><creatorcontrib>Sikolenko, V.V.</creatorcontrib><creatorcontrib>Zhaludkevich, A.L.</creatorcontrib><creatorcontrib>Khomchenko, V.A.</creatorcontrib><creatorcontrib>Franz, A.</creatorcontrib><creatorcontrib>Mazeika, K.</creatorcontrib><creatorcontrib>Baltrunas, D.</creatorcontrib><creatorcontrib>Kareiva, A.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of magnetism and magnetic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karpinsky, D.V.</au><au>Silibin, M.V.</au><au>Zhaludkevich, D.V.</au><au>Latushka, S.I.</au><au>Sysa, A.V.</au><au>Sikolenko, V.V.</au><au>Zhaludkevich, A.L.</au><au>Khomchenko, V.A.</au><au>Franz, A.</au><au>Mazeika, K.</au><au>Baltrunas, D.</au><au>Kareiva, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetic properties of BiFeO3 – BaTiO3 ceramics in the morphotropic phase boundary: A role of crystal structure and structural parameters</atitle><jtitle>Journal of magnetism and magnetic materials</jtitle><date>2021-12-01</date><risdate>2021</risdate><volume>539</volume><spage>168409</spage><pages>168409-</pages><artnum>168409</artnum><issn>0304-8853</issn><eissn>1873-4766</eissn><abstract>•The study describes the correlation between the type of lattice symmetry and structural parameters of the ceramic compounds (1-x)BiFeO3 -(x)BaTiO3 and the evolution of magnetic properties across the concentration driven structural transition from the rhombohedral to the cubic phase.•The obtained results reveal specific role of the oxygen octahedra tilting as the key factor determining the presence of non-zero remanent magnetization.
A correlation between the crystal structure and magnetic properties of system (1-x)BiFeO3 – (x)BaTiO3 with compounds across the morphotropic phase boundary was studied using X-ray and neutron diffraction, magnetometry, and Mössbauer spectroscopy measurements. Increase in the dopants content leads to the structural transition from the rhombohedral phase to the cubic phase via a formation of the two-phase region (0.2 < x < 0.33), wherein the magnetic structure changes from the modulated G-type antiferromagnetic to the collinear antiferromagnetic via a stabilization of the non-collinear antiferromagnetic phase with non-zero remanent magnetization. The value of magnetic moment calculated per iron ion based on the Mössbauer and neutron diffraction data decreases from m≈4.4μB for the compound with x = 0.25 to m = 3.2μB for the compound with x = 0.35 testifying a dominance of 3 + oxidation state of the iron ions. Increase in the amount of the cubic phase leads to a reduction in the remanent magnetization from 0.02 emu/g for the compounds with the dominant rhombohedral phase (x < 0.27) down to about 0.001 emu/g for the compounds with dominant cubic structure (x ≥ 0.27). Rapid decrease in the remanent magnetization observed in the compounds across the phase coexistence region points at no direct correlation between the type of structural distortion and non-zero remanent magnetization, while the oxygen octahedra tilting is the key factor determining the presence of non-zero remanent magnetization.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jmmm.2021.168409</doi><orcidid>https://orcid.org/0000-0002-5010-7071</orcidid><orcidid>https://orcid.org/0000-0002-1046-543X</orcidid><orcidid>https://orcid.org/0000-0003-4792-8650</orcidid><orcidid>https://orcid.org/0000-0001-5252-6870</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0304-8853 |
ispartof | Journal of magnetism and magnetic materials, 2021-12, Vol.539, p.168409, Article 168409 |
issn | 0304-8853 1873-4766 |
language | eng |
recordid | cdi_proquest_journals_2582832622 |
source | Elsevier ScienceDirect Journals |
subjects | Antiferromagnetism Barium titanates Crystal structure Diffraction Iron Magnetic measurement Magnetic moments Magnetic properties Magnetic structure Magnetism Magnetization Magnetometry Mossbauer spectroscopy Multiferroics Neutron diffraction Oxidation Phase boundaries Phase transition Valence |
title | Magnetic properties of BiFeO3 – BaTiO3 ceramics in the morphotropic phase boundary: A role of crystal structure and structural parameters |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T17%3A35%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetic%20properties%20of%20BiFeO3%20%E2%80%93%20BaTiO3%20ceramics%20in%20the%20morphotropic%20phase%20boundary:%20A%20role%20of%20crystal%20structure%20and%20structural%20parameters&rft.jtitle=Journal%20of%20magnetism%20and%20magnetic%20materials&rft.au=Karpinsky,%20D.V.&rft.date=2021-12-01&rft.volume=539&rft.spage=168409&rft.pages=168409-&rft.artnum=168409&rft.issn=0304-8853&rft.eissn=1873-4766&rft_id=info:doi/10.1016/j.jmmm.2021.168409&rft_dat=%3Cproquest_cross%3E2582832622%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2582832622&rft_id=info:pmid/&rft_els_id=S0304885321006855&rfr_iscdi=true |