Highly conductive triple-layered hollow MnO2@SnO2@NHCS nanospheres with excellent lithium storage capacity for high performance lithium-ion batteries
Tin based nanomaterials revealed large application potential for lithium storage. Multilayered hollow MnO2@SnO2@NHCS nanospheres made up of the SnO2@NHCS inner layer and the MnO2 external layer (MnO2 nanosheets) were constructed through a facile hydrothermal method followed by an in situ reduction r...
Gespeichert in:
Veröffentlicht in: | New journal of chemistry 2021-10, Vol.45 (40), p.18834-18842 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 18842 |
---|---|
container_issue | 40 |
container_start_page | 18834 |
container_title | New journal of chemistry |
container_volume | 45 |
creator | Yameng Mei Zhao, Jin'an Dang, Liyun Hu, Jiyong Guo, Yan Zhang, Shuaiguo |
description | Tin based nanomaterials revealed large application potential for lithium storage. Multilayered hollow MnO2@SnO2@NHCS nanospheres made up of the SnO2@NHCS inner layer and the MnO2 external layer (MnO2 nanosheets) were constructed through a facile hydrothermal method followed by an in situ reduction reaction. The hierarchical structure can effectively buffer volume changes, prevent aggregation of active materials and enhance electronic conductivity. As anode materials of lithium-ion batteries, the as-obtained MnO2@SnO2@NHCS-5 composite exhibited high reversible capacities of 1053.8 mA h g−1 after 100 cycles at 100 mA g−1 and an outstanding cycling stability (349.7 mA h g−1 after 1000 cycles at 5000 mA g−1). The best electrochemical performance was ascribed to the introduction of the nitrogen element and the construction of a rigid hollow structure, which obviously enhanced the migration rate of electrons and provided enough space for volume expansion. The design of a novel hollow multilayered structure and its excellent electrochemical performances may offer inspiration for its extensive utilization in lithium-ion batteries. |
doi_str_mv | 10.1039/d1nj03207k |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2582789500</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2582789500</sourcerecordid><originalsourceid>FETCH-LOGICAL-p183t-e675bfaf8769fdd5b1f46738cf48faadf9ecc4824f4d4f988d9a5592cb9ca7d63</originalsourceid><addsrcrecordid>eNo1jc1OAyEAhInRxPpz8QlIPK_CLsvCTdOoNan2UD03LD9dKoUVWGsfxPd1jXqZ-SaZzABwgdEVRhW_VthvUFWi5u0ATHBFecFLig9HxoQUqCb0GJyktEEI44biCfia2XXn9lAGrwaZ7YeGOdre6cKJvY5awS44F3bwyS_Km-WPPM-mS-iFD6nvxkaCO5s7qD-ldk77DN0Y7bCFKYco1hpK0Qtp8x6aEGE33sFex5G3wkv93y5s8LAVOetodToDR0a4pM___BS83t-9TGfFfPHwOL2dFz1mVS40berWCMMayo1SdYsNoU3FpCHMCKEM11ISVhJDFDGcMcVFXfNStlyKRtHqFFz-7vYxvA865dUmDNGPl6uyZmXDeI1Q9Q21UWw6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2582789500</pqid></control><display><type>article</type><title>Highly conductive triple-layered hollow MnO2@SnO2@NHCS nanospheres with excellent lithium storage capacity for high performance lithium-ion batteries</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Yameng Mei ; Zhao, Jin'an ; Dang, Liyun ; Hu, Jiyong ; Guo, Yan ; Zhang, Shuaiguo</creator><creatorcontrib>Yameng Mei ; Zhao, Jin'an ; Dang, Liyun ; Hu, Jiyong ; Guo, Yan ; Zhang, Shuaiguo</creatorcontrib><description>Tin based nanomaterials revealed large application potential for lithium storage. Multilayered hollow MnO2@SnO2@NHCS nanospheres made up of the SnO2@NHCS inner layer and the MnO2 external layer (MnO2 nanosheets) were constructed through a facile hydrothermal method followed by an in situ reduction reaction. The hierarchical structure can effectively buffer volume changes, prevent aggregation of active materials and enhance electronic conductivity. As anode materials of lithium-ion batteries, the as-obtained MnO2@SnO2@NHCS-5 composite exhibited high reversible capacities of 1053.8 mA h g−1 after 100 cycles at 100 mA g−1 and an outstanding cycling stability (349.7 mA h g−1 after 1000 cycles at 5000 mA g−1). The best electrochemical performance was ascribed to the introduction of the nitrogen element and the construction of a rigid hollow structure, which obviously enhanced the migration rate of electrons and provided enough space for volume expansion. The design of a novel hollow multilayered structure and its excellent electrochemical performances may offer inspiration for its extensive utilization in lithium-ion batteries.</description><identifier>ISSN: 1144-0546</identifier><identifier>EISSN: 1369-9261</identifier><identifier>DOI: 10.1039/d1nj03207k</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Anodes ; Chemical reduction ; Electrochemical analysis ; Electrode materials ; Lithium ; Lithium-ion batteries ; Manganese dioxide ; Nanomaterials ; Nanospheres ; Rechargeable batteries ; Storage batteries ; Storage capacity ; Structural hierarchy ; Tin dioxide</subject><ispartof>New journal of chemistry, 2021-10, Vol.45 (40), p.18834-18842</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Yameng Mei</creatorcontrib><creatorcontrib>Zhao, Jin'an</creatorcontrib><creatorcontrib>Dang, Liyun</creatorcontrib><creatorcontrib>Hu, Jiyong</creatorcontrib><creatorcontrib>Guo, Yan</creatorcontrib><creatorcontrib>Zhang, Shuaiguo</creatorcontrib><title>Highly conductive triple-layered hollow MnO2@SnO2@NHCS nanospheres with excellent lithium storage capacity for high performance lithium-ion batteries</title><title>New journal of chemistry</title><description>Tin based nanomaterials revealed large application potential for lithium storage. Multilayered hollow MnO2@SnO2@NHCS nanospheres made up of the SnO2@NHCS inner layer and the MnO2 external layer (MnO2 nanosheets) were constructed through a facile hydrothermal method followed by an in situ reduction reaction. The hierarchical structure can effectively buffer volume changes, prevent aggregation of active materials and enhance electronic conductivity. As anode materials of lithium-ion batteries, the as-obtained MnO2@SnO2@NHCS-5 composite exhibited high reversible capacities of 1053.8 mA h g−1 after 100 cycles at 100 mA g−1 and an outstanding cycling stability (349.7 mA h g−1 after 1000 cycles at 5000 mA g−1). The best electrochemical performance was ascribed to the introduction of the nitrogen element and the construction of a rigid hollow structure, which obviously enhanced the migration rate of electrons and provided enough space for volume expansion. The design of a novel hollow multilayered structure and its excellent electrochemical performances may offer inspiration for its extensive utilization in lithium-ion batteries.</description><subject>Anodes</subject><subject>Chemical reduction</subject><subject>Electrochemical analysis</subject><subject>Electrode materials</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Manganese dioxide</subject><subject>Nanomaterials</subject><subject>Nanospheres</subject><subject>Rechargeable batteries</subject><subject>Storage batteries</subject><subject>Storage capacity</subject><subject>Structural hierarchy</subject><subject>Tin dioxide</subject><issn>1144-0546</issn><issn>1369-9261</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo1jc1OAyEAhInRxPpz8QlIPK_CLsvCTdOoNan2UD03LD9dKoUVWGsfxPd1jXqZ-SaZzABwgdEVRhW_VthvUFWi5u0ATHBFecFLig9HxoQUqCb0GJyktEEI44biCfia2XXn9lAGrwaZ7YeGOdre6cKJvY5awS44F3bwyS_Km-WPPM-mS-iFD6nvxkaCO5s7qD-ldk77DN0Y7bCFKYco1hpK0Qtp8x6aEGE33sFex5G3wkv93y5s8LAVOetodToDR0a4pM___BS83t-9TGfFfPHwOL2dFz1mVS40berWCMMayo1SdYsNoU3FpCHMCKEM11ISVhJDFDGcMcVFXfNStlyKRtHqFFz-7vYxvA865dUmDNGPl6uyZmXDeI1Q9Q21UWw6</recordid><startdate>20211028</startdate><enddate>20211028</enddate><creator>Yameng Mei</creator><creator>Zhao, Jin'an</creator><creator>Dang, Liyun</creator><creator>Hu, Jiyong</creator><creator>Guo, Yan</creator><creator>Zhang, Shuaiguo</creator><general>Royal Society of Chemistry</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>H9R</scope><scope>JG9</scope><scope>KA0</scope></search><sort><creationdate>20211028</creationdate><title>Highly conductive triple-layered hollow MnO2@SnO2@NHCS nanospheres with excellent lithium storage capacity for high performance lithium-ion batteries</title><author>Yameng Mei ; Zhao, Jin'an ; Dang, Liyun ; Hu, Jiyong ; Guo, Yan ; Zhang, Shuaiguo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p183t-e675bfaf8769fdd5b1f46738cf48faadf9ecc4824f4d4f988d9a5592cb9ca7d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Anodes</topic><topic>Chemical reduction</topic><topic>Electrochemical analysis</topic><topic>Electrode materials</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Manganese dioxide</topic><topic>Nanomaterials</topic><topic>Nanospheres</topic><topic>Rechargeable batteries</topic><topic>Storage batteries</topic><topic>Storage capacity</topic><topic>Structural hierarchy</topic><topic>Tin dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yameng Mei</creatorcontrib><creatorcontrib>Zhao, Jin'an</creatorcontrib><creatorcontrib>Dang, Liyun</creatorcontrib><creatorcontrib>Hu, Jiyong</creatorcontrib><creatorcontrib>Guo, Yan</creatorcontrib><creatorcontrib>Zhang, Shuaiguo</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Illustrata: Natural Sciences</collection><collection>Materials Research Database</collection><collection>ProQuest Illustrata: Technology Collection</collection><jtitle>New journal of chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yameng Mei</au><au>Zhao, Jin'an</au><au>Dang, Liyun</au><au>Hu, Jiyong</au><au>Guo, Yan</au><au>Zhang, Shuaiguo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highly conductive triple-layered hollow MnO2@SnO2@NHCS nanospheres with excellent lithium storage capacity for high performance lithium-ion batteries</atitle><jtitle>New journal of chemistry</jtitle><date>2021-10-28</date><risdate>2021</risdate><volume>45</volume><issue>40</issue><spage>18834</spage><epage>18842</epage><pages>18834-18842</pages><issn>1144-0546</issn><eissn>1369-9261</eissn><abstract>Tin based nanomaterials revealed large application potential for lithium storage. Multilayered hollow MnO2@SnO2@NHCS nanospheres made up of the SnO2@NHCS inner layer and the MnO2 external layer (MnO2 nanosheets) were constructed through a facile hydrothermal method followed by an in situ reduction reaction. The hierarchical structure can effectively buffer volume changes, prevent aggregation of active materials and enhance electronic conductivity. As anode materials of lithium-ion batteries, the as-obtained MnO2@SnO2@NHCS-5 composite exhibited high reversible capacities of 1053.8 mA h g−1 after 100 cycles at 100 mA g−1 and an outstanding cycling stability (349.7 mA h g−1 after 1000 cycles at 5000 mA g−1). The best electrochemical performance was ascribed to the introduction of the nitrogen element and the construction of a rigid hollow structure, which obviously enhanced the migration rate of electrons and provided enough space for volume expansion. The design of a novel hollow multilayered structure and its excellent electrochemical performances may offer inspiration for its extensive utilization in lithium-ion batteries.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d1nj03207k</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1144-0546 |
ispartof | New journal of chemistry, 2021-10, Vol.45 (40), p.18834-18842 |
issn | 1144-0546 1369-9261 |
language | eng |
recordid | cdi_proquest_journals_2582789500 |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Anodes Chemical reduction Electrochemical analysis Electrode materials Lithium Lithium-ion batteries Manganese dioxide Nanomaterials Nanospheres Rechargeable batteries Storage batteries Storage capacity Structural hierarchy Tin dioxide |
title | Highly conductive triple-layered hollow MnO2@SnO2@NHCS nanospheres with excellent lithium storage capacity for high performance lithium-ion batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T13%3A10%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highly%20conductive%20triple-layered%20hollow%20MnO2@SnO2@NHCS%20nanospheres%20with%20excellent%20lithium%20storage%20capacity%20for%20high%20performance%20lithium-ion%20batteries&rft.jtitle=New%20journal%20of%20chemistry&rft.au=Yameng%20Mei&rft.date=2021-10-28&rft.volume=45&rft.issue=40&rft.spage=18834&rft.epage=18842&rft.pages=18834-18842&rft.issn=1144-0546&rft.eissn=1369-9261&rft_id=info:doi/10.1039/d1nj03207k&rft_dat=%3Cproquest%3E2582789500%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2582789500&rft_id=info:pmid/&rfr_iscdi=true |