Highly conductive triple-layered hollow MnO2@SnO2@NHCS nanospheres with excellent lithium storage capacity for high performance lithium-ion batteries

Tin based nanomaterials revealed large application potential for lithium storage. Multilayered hollow MnO2@SnO2@NHCS nanospheres made up of the SnO2@NHCS inner layer and the MnO2 external layer (MnO2 nanosheets) were constructed through a facile hydrothermal method followed by an in situ reduction r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:New journal of chemistry 2021-10, Vol.45 (40), p.18834-18842
Hauptverfasser: Yameng Mei, Zhao, Jin'an, Dang, Liyun, Hu, Jiyong, Guo, Yan, Zhang, Shuaiguo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 18842
container_issue 40
container_start_page 18834
container_title New journal of chemistry
container_volume 45
creator Yameng Mei
Zhao, Jin'an
Dang, Liyun
Hu, Jiyong
Guo, Yan
Zhang, Shuaiguo
description Tin based nanomaterials revealed large application potential for lithium storage. Multilayered hollow MnO2@SnO2@NHCS nanospheres made up of the SnO2@NHCS inner layer and the MnO2 external layer (MnO2 nanosheets) were constructed through a facile hydrothermal method followed by an in situ reduction reaction. The hierarchical structure can effectively buffer volume changes, prevent aggregation of active materials and enhance electronic conductivity. As anode materials of lithium-ion batteries, the as-obtained MnO2@SnO2@NHCS-5 composite exhibited high reversible capacities of 1053.8 mA h g−1 after 100 cycles at 100 mA g−1 and an outstanding cycling stability (349.7 mA h g−1 after 1000 cycles at 5000 mA g−1). The best electrochemical performance was ascribed to the introduction of the nitrogen element and the construction of a rigid hollow structure, which obviously enhanced the migration rate of electrons and provided enough space for volume expansion. The design of a novel hollow multilayered structure and its excellent electrochemical performances may offer inspiration for its extensive utilization in lithium-ion batteries.
doi_str_mv 10.1039/d1nj03207k
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2582789500</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2582789500</sourcerecordid><originalsourceid>FETCH-LOGICAL-p183t-e675bfaf8769fdd5b1f46738cf48faadf9ecc4824f4d4f988d9a5592cb9ca7d63</originalsourceid><addsrcrecordid>eNo1jc1OAyEAhInRxPpz8QlIPK_CLsvCTdOoNan2UD03LD9dKoUVWGsfxPd1jXqZ-SaZzABwgdEVRhW_VthvUFWi5u0ATHBFecFLig9HxoQUqCb0GJyktEEI44biCfia2XXn9lAGrwaZ7YeGOdre6cKJvY5awS44F3bwyS_Km-WPPM-mS-iFD6nvxkaCO5s7qD-ldk77DN0Y7bCFKYco1hpK0Qtp8x6aEGE33sFex5G3wkv93y5s8LAVOetodToDR0a4pM___BS83t-9TGfFfPHwOL2dFz1mVS40berWCMMayo1SdYsNoU3FpCHMCKEM11ISVhJDFDGcMcVFXfNStlyKRtHqFFz-7vYxvA865dUmDNGPl6uyZmXDeI1Q9Q21UWw6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2582789500</pqid></control><display><type>article</type><title>Highly conductive triple-layered hollow MnO2@SnO2@NHCS nanospheres with excellent lithium storage capacity for high performance lithium-ion batteries</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Yameng Mei ; Zhao, Jin'an ; Dang, Liyun ; Hu, Jiyong ; Guo, Yan ; Zhang, Shuaiguo</creator><creatorcontrib>Yameng Mei ; Zhao, Jin'an ; Dang, Liyun ; Hu, Jiyong ; Guo, Yan ; Zhang, Shuaiguo</creatorcontrib><description>Tin based nanomaterials revealed large application potential for lithium storage. Multilayered hollow MnO2@SnO2@NHCS nanospheres made up of the SnO2@NHCS inner layer and the MnO2 external layer (MnO2 nanosheets) were constructed through a facile hydrothermal method followed by an in situ reduction reaction. The hierarchical structure can effectively buffer volume changes, prevent aggregation of active materials and enhance electronic conductivity. As anode materials of lithium-ion batteries, the as-obtained MnO2@SnO2@NHCS-5 composite exhibited high reversible capacities of 1053.8 mA h g−1 after 100 cycles at 100 mA g−1 and an outstanding cycling stability (349.7 mA h g−1 after 1000 cycles at 5000 mA g−1). The best electrochemical performance was ascribed to the introduction of the nitrogen element and the construction of a rigid hollow structure, which obviously enhanced the migration rate of electrons and provided enough space for volume expansion. The design of a novel hollow multilayered structure and its excellent electrochemical performances may offer inspiration for its extensive utilization in lithium-ion batteries.</description><identifier>ISSN: 1144-0546</identifier><identifier>EISSN: 1369-9261</identifier><identifier>DOI: 10.1039/d1nj03207k</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Anodes ; Chemical reduction ; Electrochemical analysis ; Electrode materials ; Lithium ; Lithium-ion batteries ; Manganese dioxide ; Nanomaterials ; Nanospheres ; Rechargeable batteries ; Storage batteries ; Storage capacity ; Structural hierarchy ; Tin dioxide</subject><ispartof>New journal of chemistry, 2021-10, Vol.45 (40), p.18834-18842</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Yameng Mei</creatorcontrib><creatorcontrib>Zhao, Jin'an</creatorcontrib><creatorcontrib>Dang, Liyun</creatorcontrib><creatorcontrib>Hu, Jiyong</creatorcontrib><creatorcontrib>Guo, Yan</creatorcontrib><creatorcontrib>Zhang, Shuaiguo</creatorcontrib><title>Highly conductive triple-layered hollow MnO2@SnO2@NHCS nanospheres with excellent lithium storage capacity for high performance lithium-ion batteries</title><title>New journal of chemistry</title><description>Tin based nanomaterials revealed large application potential for lithium storage. Multilayered hollow MnO2@SnO2@NHCS nanospheres made up of the SnO2@NHCS inner layer and the MnO2 external layer (MnO2 nanosheets) were constructed through a facile hydrothermal method followed by an in situ reduction reaction. The hierarchical structure can effectively buffer volume changes, prevent aggregation of active materials and enhance electronic conductivity. As anode materials of lithium-ion batteries, the as-obtained MnO2@SnO2@NHCS-5 composite exhibited high reversible capacities of 1053.8 mA h g−1 after 100 cycles at 100 mA g−1 and an outstanding cycling stability (349.7 mA h g−1 after 1000 cycles at 5000 mA g−1). The best electrochemical performance was ascribed to the introduction of the nitrogen element and the construction of a rigid hollow structure, which obviously enhanced the migration rate of electrons and provided enough space for volume expansion. The design of a novel hollow multilayered structure and its excellent electrochemical performances may offer inspiration for its extensive utilization in lithium-ion batteries.</description><subject>Anodes</subject><subject>Chemical reduction</subject><subject>Electrochemical analysis</subject><subject>Electrode materials</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Manganese dioxide</subject><subject>Nanomaterials</subject><subject>Nanospheres</subject><subject>Rechargeable batteries</subject><subject>Storage batteries</subject><subject>Storage capacity</subject><subject>Structural hierarchy</subject><subject>Tin dioxide</subject><issn>1144-0546</issn><issn>1369-9261</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo1jc1OAyEAhInRxPpz8QlIPK_CLsvCTdOoNan2UD03LD9dKoUVWGsfxPd1jXqZ-SaZzABwgdEVRhW_VthvUFWi5u0ATHBFecFLig9HxoQUqCb0GJyktEEI44biCfia2XXn9lAGrwaZ7YeGOdre6cKJvY5awS44F3bwyS_Km-WPPM-mS-iFD6nvxkaCO5s7qD-ldk77DN0Y7bCFKYco1hpK0Qtp8x6aEGE33sFex5G3wkv93y5s8LAVOetodToDR0a4pM___BS83t-9TGfFfPHwOL2dFz1mVS40berWCMMayo1SdYsNoU3FpCHMCKEM11ISVhJDFDGcMcVFXfNStlyKRtHqFFz-7vYxvA865dUmDNGPl6uyZmXDeI1Q9Q21UWw6</recordid><startdate>20211028</startdate><enddate>20211028</enddate><creator>Yameng Mei</creator><creator>Zhao, Jin'an</creator><creator>Dang, Liyun</creator><creator>Hu, Jiyong</creator><creator>Guo, Yan</creator><creator>Zhang, Shuaiguo</creator><general>Royal Society of Chemistry</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>H9R</scope><scope>JG9</scope><scope>KA0</scope></search><sort><creationdate>20211028</creationdate><title>Highly conductive triple-layered hollow MnO2@SnO2@NHCS nanospheres with excellent lithium storage capacity for high performance lithium-ion batteries</title><author>Yameng Mei ; Zhao, Jin'an ; Dang, Liyun ; Hu, Jiyong ; Guo, Yan ; Zhang, Shuaiguo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p183t-e675bfaf8769fdd5b1f46738cf48faadf9ecc4824f4d4f988d9a5592cb9ca7d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Anodes</topic><topic>Chemical reduction</topic><topic>Electrochemical analysis</topic><topic>Electrode materials</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Manganese dioxide</topic><topic>Nanomaterials</topic><topic>Nanospheres</topic><topic>Rechargeable batteries</topic><topic>Storage batteries</topic><topic>Storage capacity</topic><topic>Structural hierarchy</topic><topic>Tin dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yameng Mei</creatorcontrib><creatorcontrib>Zhao, Jin'an</creatorcontrib><creatorcontrib>Dang, Liyun</creatorcontrib><creatorcontrib>Hu, Jiyong</creatorcontrib><creatorcontrib>Guo, Yan</creatorcontrib><creatorcontrib>Zhang, Shuaiguo</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Illustrata: Natural Sciences</collection><collection>Materials Research Database</collection><collection>ProQuest Illustrata: Technology Collection</collection><jtitle>New journal of chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yameng Mei</au><au>Zhao, Jin'an</au><au>Dang, Liyun</au><au>Hu, Jiyong</au><au>Guo, Yan</au><au>Zhang, Shuaiguo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highly conductive triple-layered hollow MnO2@SnO2@NHCS nanospheres with excellent lithium storage capacity for high performance lithium-ion batteries</atitle><jtitle>New journal of chemistry</jtitle><date>2021-10-28</date><risdate>2021</risdate><volume>45</volume><issue>40</issue><spage>18834</spage><epage>18842</epage><pages>18834-18842</pages><issn>1144-0546</issn><eissn>1369-9261</eissn><abstract>Tin based nanomaterials revealed large application potential for lithium storage. Multilayered hollow MnO2@SnO2@NHCS nanospheres made up of the SnO2@NHCS inner layer and the MnO2 external layer (MnO2 nanosheets) were constructed through a facile hydrothermal method followed by an in situ reduction reaction. The hierarchical structure can effectively buffer volume changes, prevent aggregation of active materials and enhance electronic conductivity. As anode materials of lithium-ion batteries, the as-obtained MnO2@SnO2@NHCS-5 composite exhibited high reversible capacities of 1053.8 mA h g−1 after 100 cycles at 100 mA g−1 and an outstanding cycling stability (349.7 mA h g−1 after 1000 cycles at 5000 mA g−1). The best electrochemical performance was ascribed to the introduction of the nitrogen element and the construction of a rigid hollow structure, which obviously enhanced the migration rate of electrons and provided enough space for volume expansion. The design of a novel hollow multilayered structure and its excellent electrochemical performances may offer inspiration for its extensive utilization in lithium-ion batteries.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d1nj03207k</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1144-0546
ispartof New journal of chemistry, 2021-10, Vol.45 (40), p.18834-18842
issn 1144-0546
1369-9261
language eng
recordid cdi_proquest_journals_2582789500
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Anodes
Chemical reduction
Electrochemical analysis
Electrode materials
Lithium
Lithium-ion batteries
Manganese dioxide
Nanomaterials
Nanospheres
Rechargeable batteries
Storage batteries
Storage capacity
Structural hierarchy
Tin dioxide
title Highly conductive triple-layered hollow MnO2@SnO2@NHCS nanospheres with excellent lithium storage capacity for high performance lithium-ion batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T13%3A10%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highly%20conductive%20triple-layered%20hollow%20MnO2@SnO2@NHCS%20nanospheres%20with%20excellent%20lithium%20storage%20capacity%20for%20high%20performance%20lithium-ion%20batteries&rft.jtitle=New%20journal%20of%20chemistry&rft.au=Yameng%20Mei&rft.date=2021-10-28&rft.volume=45&rft.issue=40&rft.spage=18834&rft.epage=18842&rft.pages=18834-18842&rft.issn=1144-0546&rft.eissn=1369-9261&rft_id=info:doi/10.1039/d1nj03207k&rft_dat=%3Cproquest%3E2582789500%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2582789500&rft_id=info:pmid/&rfr_iscdi=true