Ensuring performance requirements for semiactive suspension with nonconventional control systems via robust linear parameter varying framework
Summary In the article a method which is able to provide the required performance level of a system is proposed. Its principle is to combine the results of conventional control methods with those of methods based on nonconventional, for example, machine‐learning‐based ones. In more detail, it design...
Gespeichert in:
Veröffentlicht in: | International journal of robust and nonlinear control 2021-11, Vol.31 (17), p.8165-8182 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8182 |
---|---|
container_issue | 17 |
container_start_page | 8165 |
container_title | International journal of robust and nonlinear control |
container_volume | 31 |
creator | Németh, Balázs Gáspár, Péter |
description | Summary
In the article a method which is able to provide the required performance level of a system is proposed. Its principle is to combine the results of conventional control methods with those of methods based on nonconventional, for example, machine‐learning‐based ones. In more detail, it designs a robust linear parameter varying (LPV) control in a predefined form, whose output is equivalent to the output of a machine‐learning‐based control inside a predefined operational range. Outside of the operation range the output of the machine‐learning‐based control is overridden, while the intervention with the performance level is guaranteed. The efficiency of the proposed method is illustrated through an example on the semiactive suspension control design. The nonlinearities in the dynamics of the magneto‐rheological damper are considered through a nonlinear parameter varying (NLPV) model. It designs an NLPV model‐based LPV control, which is combined with a neural network to achieve preview capability. |
doi_str_mv | 10.1002/rnc.5282 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2582672971</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2582672971</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3272-5c2dcd3a652987ad83bdc99ec0cc98f11f2d6998b7736b276daa4705a28463ce3</originalsourceid><addsrcrecordid>eNp1kN1Kw0AQhYMoWKvgIyx4403qZvO7l1L8g6Igeh02m4luTXbTmaSlL-Ezu7HeejUzZz5mDicILiO-iDgXN2j1IhWFOApmEZcyjEQsj6c-kWEhRXwanBGtOfc7kcyC7ztLIxr7wXrAxmGnrAaGsBkNQgd2IOZVRtAZpQezBUYj9WDJOMt2Zvhk1lnt7NajXlIt88OArmW0pwE6YlujGLpqpIG1xoJC1itUHQyAbKtwP_1uJmHn8Os8OGlUS3DxV-fB-_3d2_IxXL08PC1vV6GORS7CVIta17HKUiGLXNVFXNVaStBca1k0UdSIOpOyqPI8ziqRZ7VSSc5TJYokizXE8-DqcLdHtxmBhnLtRvT2qRRpIbJcyDzy1PWB0uiIEJqyR9N5z2XEyynt0qddTml7NDygO9PC_l-ufH1e_vI_TDSF7Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2582672971</pqid></control><display><type>article</type><title>Ensuring performance requirements for semiactive suspension with nonconventional control systems via robust linear parameter varying framework</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Németh, Balázs ; Gáspár, Péter</creator><creatorcontrib>Németh, Balázs ; Gáspár, Péter</creatorcontrib><description>Summary
In the article a method which is able to provide the required performance level of a system is proposed. Its principle is to combine the results of conventional control methods with those of methods based on nonconventional, for example, machine‐learning‐based ones. In more detail, it designs a robust linear parameter varying (LPV) control in a predefined form, whose output is equivalent to the output of a machine‐learning‐based control inside a predefined operational range. Outside of the operation range the output of the machine‐learning‐based control is overridden, while the intervention with the performance level is guaranteed. The efficiency of the proposed method is illustrated through an example on the semiactive suspension control design. The nonlinearities in the dynamics of the magneto‐rheological damper are considered through a nonlinear parameter varying (NLPV) model. It designs an NLPV model‐based LPV control, which is combined with a neural network to achieve preview capability.</description><identifier>ISSN: 1049-8923</identifier><identifier>EISSN: 1099-1239</identifier><identifier>DOI: 10.1002/rnc.5282</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Control methods ; Learning ; machine‐learning‐based control ; Mathematical models ; Neural networks ; Nonlinearity ; Parameter robustness ; Parameter varying control ; performance guarantees ; Rheological properties ; Robust control ; robust LPV control ; Semiactive suspensions</subject><ispartof>International journal of robust and nonlinear control, 2021-11, Vol.31 (17), p.8165-8182</ispartof><rights>2020 John Wiley & Sons, Ltd.</rights><rights>2021 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3272-5c2dcd3a652987ad83bdc99ec0cc98f11f2d6998b7736b276daa4705a28463ce3</citedby><cites>FETCH-LOGICAL-c3272-5c2dcd3a652987ad83bdc99ec0cc98f11f2d6998b7736b276daa4705a28463ce3</cites><orcidid>0000-0003-0211-3204</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Frnc.5282$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Frnc.5282$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Németh, Balázs</creatorcontrib><creatorcontrib>Gáspár, Péter</creatorcontrib><title>Ensuring performance requirements for semiactive suspension with nonconventional control systems via robust linear parameter varying framework</title><title>International journal of robust and nonlinear control</title><description>Summary
In the article a method which is able to provide the required performance level of a system is proposed. Its principle is to combine the results of conventional control methods with those of methods based on nonconventional, for example, machine‐learning‐based ones. In more detail, it designs a robust linear parameter varying (LPV) control in a predefined form, whose output is equivalent to the output of a machine‐learning‐based control inside a predefined operational range. Outside of the operation range the output of the machine‐learning‐based control is overridden, while the intervention with the performance level is guaranteed. The efficiency of the proposed method is illustrated through an example on the semiactive suspension control design. The nonlinearities in the dynamics of the magneto‐rheological damper are considered through a nonlinear parameter varying (NLPV) model. It designs an NLPV model‐based LPV control, which is combined with a neural network to achieve preview capability.</description><subject>Control methods</subject><subject>Learning</subject><subject>machine‐learning‐based control</subject><subject>Mathematical models</subject><subject>Neural networks</subject><subject>Nonlinearity</subject><subject>Parameter robustness</subject><subject>Parameter varying control</subject><subject>performance guarantees</subject><subject>Rheological properties</subject><subject>Robust control</subject><subject>robust LPV control</subject><subject>Semiactive suspensions</subject><issn>1049-8923</issn><issn>1099-1239</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kN1Kw0AQhYMoWKvgIyx4403qZvO7l1L8g6Igeh02m4luTXbTmaSlL-Ezu7HeejUzZz5mDicILiO-iDgXN2j1IhWFOApmEZcyjEQsj6c-kWEhRXwanBGtOfc7kcyC7ztLIxr7wXrAxmGnrAaGsBkNQgd2IOZVRtAZpQezBUYj9WDJOMt2Zvhk1lnt7NajXlIt88OArmW0pwE6YlujGLpqpIG1xoJC1itUHQyAbKtwP_1uJmHn8Os8OGlUS3DxV-fB-_3d2_IxXL08PC1vV6GORS7CVIta17HKUiGLXNVFXNVaStBca1k0UdSIOpOyqPI8ziqRZ7VSSc5TJYokizXE8-DqcLdHtxmBhnLtRvT2qRRpIbJcyDzy1PWB0uiIEJqyR9N5z2XEyynt0qddTml7NDygO9PC_l-ufH1e_vI_TDSF7Q</recordid><startdate>20211125</startdate><enddate>20211125</enddate><creator>Németh, Balázs</creator><creator>Gáspár, Péter</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-0211-3204</orcidid></search><sort><creationdate>20211125</creationdate><title>Ensuring performance requirements for semiactive suspension with nonconventional control systems via robust linear parameter varying framework</title><author>Németh, Balázs ; Gáspár, Péter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3272-5c2dcd3a652987ad83bdc99ec0cc98f11f2d6998b7736b276daa4705a28463ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Control methods</topic><topic>Learning</topic><topic>machine‐learning‐based control</topic><topic>Mathematical models</topic><topic>Neural networks</topic><topic>Nonlinearity</topic><topic>Parameter robustness</topic><topic>Parameter varying control</topic><topic>performance guarantees</topic><topic>Rheological properties</topic><topic>Robust control</topic><topic>robust LPV control</topic><topic>Semiactive suspensions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Németh, Balázs</creatorcontrib><creatorcontrib>Gáspár, Péter</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of robust and nonlinear control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Németh, Balázs</au><au>Gáspár, Péter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ensuring performance requirements for semiactive suspension with nonconventional control systems via robust linear parameter varying framework</atitle><jtitle>International journal of robust and nonlinear control</jtitle><date>2021-11-25</date><risdate>2021</risdate><volume>31</volume><issue>17</issue><spage>8165</spage><epage>8182</epage><pages>8165-8182</pages><issn>1049-8923</issn><eissn>1099-1239</eissn><abstract>Summary
In the article a method which is able to provide the required performance level of a system is proposed. Its principle is to combine the results of conventional control methods with those of methods based on nonconventional, for example, machine‐learning‐based ones. In more detail, it designs a robust linear parameter varying (LPV) control in a predefined form, whose output is equivalent to the output of a machine‐learning‐based control inside a predefined operational range. Outside of the operation range the output of the machine‐learning‐based control is overridden, while the intervention with the performance level is guaranteed. The efficiency of the proposed method is illustrated through an example on the semiactive suspension control design. The nonlinearities in the dynamics of the magneto‐rheological damper are considered through a nonlinear parameter varying (NLPV) model. It designs an NLPV model‐based LPV control, which is combined with a neural network to achieve preview capability.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/rnc.5282</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-0211-3204</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1049-8923 |
ispartof | International journal of robust and nonlinear control, 2021-11, Vol.31 (17), p.8165-8182 |
issn | 1049-8923 1099-1239 |
language | eng |
recordid | cdi_proquest_journals_2582672971 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Control methods Learning machine‐learning‐based control Mathematical models Neural networks Nonlinearity Parameter robustness Parameter varying control performance guarantees Rheological properties Robust control robust LPV control Semiactive suspensions |
title | Ensuring performance requirements for semiactive suspension with nonconventional control systems via robust linear parameter varying framework |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T16%3A01%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ensuring%20performance%20requirements%20for%20semiactive%20suspension%20with%20nonconventional%20control%20systems%20via%20robust%20linear%20parameter%20varying%20framework&rft.jtitle=International%20journal%20of%20robust%20and%20nonlinear%20control&rft.au=N%C3%A9meth,%20Bal%C3%A1zs&rft.date=2021-11-25&rft.volume=31&rft.issue=17&rft.spage=8165&rft.epage=8182&rft.pages=8165-8182&rft.issn=1049-8923&rft.eissn=1099-1239&rft_id=info:doi/10.1002/rnc.5282&rft_dat=%3Cproquest_cross%3E2582672971%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2582672971&rft_id=info:pmid/&rfr_iscdi=true |