Ensuring performance requirements for semiactive suspension with nonconventional control systems via robust linear parameter varying framework

Summary In the article a method which is able to provide the required performance level of a system is proposed. Its principle is to combine the results of conventional control methods with those of methods based on nonconventional, for example, machine‐learning‐based ones. In more detail, it design...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of robust and nonlinear control 2021-11, Vol.31 (17), p.8165-8182
Hauptverfasser: Németh, Balázs, Gáspár, Péter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8182
container_issue 17
container_start_page 8165
container_title International journal of robust and nonlinear control
container_volume 31
creator Németh, Balázs
Gáspár, Péter
description Summary In the article a method which is able to provide the required performance level of a system is proposed. Its principle is to combine the results of conventional control methods with those of methods based on nonconventional, for example, machine‐learning‐based ones. In more detail, it designs a robust linear parameter varying (LPV) control in a predefined form, whose output is equivalent to the output of a machine‐learning‐based control inside a predefined operational range. Outside of the operation range the output of the machine‐learning‐based control is overridden, while the intervention with the performance level is guaranteed. The efficiency of the proposed method is illustrated through an example on the semiactive suspension control design. The nonlinearities in the dynamics of the magneto‐rheological damper are considered through a nonlinear parameter varying (NLPV) model. It designs an NLPV model‐based LPV control, which is combined with a neural network to achieve preview capability.
doi_str_mv 10.1002/rnc.5282
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2582672971</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2582672971</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3272-5c2dcd3a652987ad83bdc99ec0cc98f11f2d6998b7736b276daa4705a28463ce3</originalsourceid><addsrcrecordid>eNp1kN1Kw0AQhYMoWKvgIyx4403qZvO7l1L8g6Igeh02m4luTXbTmaSlL-Ezu7HeejUzZz5mDicILiO-iDgXN2j1IhWFOApmEZcyjEQsj6c-kWEhRXwanBGtOfc7kcyC7ztLIxr7wXrAxmGnrAaGsBkNQgd2IOZVRtAZpQezBUYj9WDJOMt2Zvhk1lnt7NajXlIt88OArmW0pwE6YlujGLpqpIG1xoJC1itUHQyAbKtwP_1uJmHn8Os8OGlUS3DxV-fB-_3d2_IxXL08PC1vV6GORS7CVIta17HKUiGLXNVFXNVaStBca1k0UdSIOpOyqPI8ziqRZ7VSSc5TJYokizXE8-DqcLdHtxmBhnLtRvT2qRRpIbJcyDzy1PWB0uiIEJqyR9N5z2XEyynt0qddTml7NDygO9PC_l-ufH1e_vI_TDSF7Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2582672971</pqid></control><display><type>article</type><title>Ensuring performance requirements for semiactive suspension with nonconventional control systems via robust linear parameter varying framework</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Németh, Balázs ; Gáspár, Péter</creator><creatorcontrib>Németh, Balázs ; Gáspár, Péter</creatorcontrib><description>Summary In the article a method which is able to provide the required performance level of a system is proposed. Its principle is to combine the results of conventional control methods with those of methods based on nonconventional, for example, machine‐learning‐based ones. In more detail, it designs a robust linear parameter varying (LPV) control in a predefined form, whose output is equivalent to the output of a machine‐learning‐based control inside a predefined operational range. Outside of the operation range the output of the machine‐learning‐based control is overridden, while the intervention with the performance level is guaranteed. The efficiency of the proposed method is illustrated through an example on the semiactive suspension control design. The nonlinearities in the dynamics of the magneto‐rheological damper are considered through a nonlinear parameter varying (NLPV) model. It designs an NLPV model‐based LPV control, which is combined with a neural network to achieve preview capability.</description><identifier>ISSN: 1049-8923</identifier><identifier>EISSN: 1099-1239</identifier><identifier>DOI: 10.1002/rnc.5282</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Control methods ; Learning ; machine‐learning‐based control ; Mathematical models ; Neural networks ; Nonlinearity ; Parameter robustness ; Parameter varying control ; performance guarantees ; Rheological properties ; Robust control ; robust LPV control ; Semiactive suspensions</subject><ispartof>International journal of robust and nonlinear control, 2021-11, Vol.31 (17), p.8165-8182</ispartof><rights>2020 John Wiley &amp; Sons, Ltd.</rights><rights>2021 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3272-5c2dcd3a652987ad83bdc99ec0cc98f11f2d6998b7736b276daa4705a28463ce3</citedby><cites>FETCH-LOGICAL-c3272-5c2dcd3a652987ad83bdc99ec0cc98f11f2d6998b7736b276daa4705a28463ce3</cites><orcidid>0000-0003-0211-3204</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Frnc.5282$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Frnc.5282$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Németh, Balázs</creatorcontrib><creatorcontrib>Gáspár, Péter</creatorcontrib><title>Ensuring performance requirements for semiactive suspension with nonconventional control systems via robust linear parameter varying framework</title><title>International journal of robust and nonlinear control</title><description>Summary In the article a method which is able to provide the required performance level of a system is proposed. Its principle is to combine the results of conventional control methods with those of methods based on nonconventional, for example, machine‐learning‐based ones. In more detail, it designs a robust linear parameter varying (LPV) control in a predefined form, whose output is equivalent to the output of a machine‐learning‐based control inside a predefined operational range. Outside of the operation range the output of the machine‐learning‐based control is overridden, while the intervention with the performance level is guaranteed. The efficiency of the proposed method is illustrated through an example on the semiactive suspension control design. The nonlinearities in the dynamics of the magneto‐rheological damper are considered through a nonlinear parameter varying (NLPV) model. It designs an NLPV model‐based LPV control, which is combined with a neural network to achieve preview capability.</description><subject>Control methods</subject><subject>Learning</subject><subject>machine‐learning‐based control</subject><subject>Mathematical models</subject><subject>Neural networks</subject><subject>Nonlinearity</subject><subject>Parameter robustness</subject><subject>Parameter varying control</subject><subject>performance guarantees</subject><subject>Rheological properties</subject><subject>Robust control</subject><subject>robust LPV control</subject><subject>Semiactive suspensions</subject><issn>1049-8923</issn><issn>1099-1239</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kN1Kw0AQhYMoWKvgIyx4403qZvO7l1L8g6Igeh02m4luTXbTmaSlL-Ezu7HeejUzZz5mDicILiO-iDgXN2j1IhWFOApmEZcyjEQsj6c-kWEhRXwanBGtOfc7kcyC7ztLIxr7wXrAxmGnrAaGsBkNQgd2IOZVRtAZpQezBUYj9WDJOMt2Zvhk1lnt7NajXlIt88OArmW0pwE6YlujGLpqpIG1xoJC1itUHQyAbKtwP_1uJmHn8Os8OGlUS3DxV-fB-_3d2_IxXL08PC1vV6GORS7CVIta17HKUiGLXNVFXNVaStBca1k0UdSIOpOyqPI8ziqRZ7VSSc5TJYokizXE8-DqcLdHtxmBhnLtRvT2qRRpIbJcyDzy1PWB0uiIEJqyR9N5z2XEyynt0qddTml7NDygO9PC_l-ufH1e_vI_TDSF7Q</recordid><startdate>20211125</startdate><enddate>20211125</enddate><creator>Németh, Balázs</creator><creator>Gáspár, Péter</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-0211-3204</orcidid></search><sort><creationdate>20211125</creationdate><title>Ensuring performance requirements for semiactive suspension with nonconventional control systems via robust linear parameter varying framework</title><author>Németh, Balázs ; Gáspár, Péter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3272-5c2dcd3a652987ad83bdc99ec0cc98f11f2d6998b7736b276daa4705a28463ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Control methods</topic><topic>Learning</topic><topic>machine‐learning‐based control</topic><topic>Mathematical models</topic><topic>Neural networks</topic><topic>Nonlinearity</topic><topic>Parameter robustness</topic><topic>Parameter varying control</topic><topic>performance guarantees</topic><topic>Rheological properties</topic><topic>Robust control</topic><topic>robust LPV control</topic><topic>Semiactive suspensions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Németh, Balázs</creatorcontrib><creatorcontrib>Gáspár, Péter</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of robust and nonlinear control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Németh, Balázs</au><au>Gáspár, Péter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ensuring performance requirements for semiactive suspension with nonconventional control systems via robust linear parameter varying framework</atitle><jtitle>International journal of robust and nonlinear control</jtitle><date>2021-11-25</date><risdate>2021</risdate><volume>31</volume><issue>17</issue><spage>8165</spage><epage>8182</epage><pages>8165-8182</pages><issn>1049-8923</issn><eissn>1099-1239</eissn><abstract>Summary In the article a method which is able to provide the required performance level of a system is proposed. Its principle is to combine the results of conventional control methods with those of methods based on nonconventional, for example, machine‐learning‐based ones. In more detail, it designs a robust linear parameter varying (LPV) control in a predefined form, whose output is equivalent to the output of a machine‐learning‐based control inside a predefined operational range. Outside of the operation range the output of the machine‐learning‐based control is overridden, while the intervention with the performance level is guaranteed. The efficiency of the proposed method is illustrated through an example on the semiactive suspension control design. The nonlinearities in the dynamics of the magneto‐rheological damper are considered through a nonlinear parameter varying (NLPV) model. It designs an NLPV model‐based LPV control, which is combined with a neural network to achieve preview capability.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/rnc.5282</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-0211-3204</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1049-8923
ispartof International journal of robust and nonlinear control, 2021-11, Vol.31 (17), p.8165-8182
issn 1049-8923
1099-1239
language eng
recordid cdi_proquest_journals_2582672971
source Wiley Online Library Journals Frontfile Complete
subjects Control methods
Learning
machine‐learning‐based control
Mathematical models
Neural networks
Nonlinearity
Parameter robustness
Parameter varying control
performance guarantees
Rheological properties
Robust control
robust LPV control
Semiactive suspensions
title Ensuring performance requirements for semiactive suspension with nonconventional control systems via robust linear parameter varying framework
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T16%3A01%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ensuring%20performance%20requirements%20for%20semiactive%20suspension%20with%20nonconventional%20control%20systems%20via%20robust%20linear%20parameter%20varying%20framework&rft.jtitle=International%20journal%20of%20robust%20and%20nonlinear%20control&rft.au=N%C3%A9meth,%20Bal%C3%A1zs&rft.date=2021-11-25&rft.volume=31&rft.issue=17&rft.spage=8165&rft.epage=8182&rft.pages=8165-8182&rft.issn=1049-8923&rft.eissn=1099-1239&rft_id=info:doi/10.1002/rnc.5282&rft_dat=%3Cproquest_cross%3E2582672971%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2582672971&rft_id=info:pmid/&rfr_iscdi=true