Context-Aware Text Matching Algorithm for Korean Peninsula Language Knowledge Base Based on Density Clustering
The majority of the traditional methods deal with text matching at the word level which remains uncertain as the text semantic features are ignored. This also leads to the problems of low recall and high space utilization of text matching while the comprehensiveness of matching results is poor. The...
Gespeichert in:
Veröffentlicht in: | Mobile information systems 2021-10, Vol.2021, p.1-9 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | Mobile information systems |
container_volume | 2021 |
creator | Xiang, Li ZongXun, Li |
description | The majority of the traditional methods deal with text matching at the word level which remains uncertain as the text semantic features are ignored. This also leads to the problems of low recall and high space utilization of text matching while the comprehensiveness of matching results is poor. The resultant method, thus, cannot process long text and short text simultaneously. The current study proposes a text matching algorithm for Korean Peninsula language knowledge base based on density clustering. Using the deep multiview semantic document representation model, the semantic vector of the text to be matched is captured for semantic dependency which is utilized to extract the text semantic features. As per the feature extraction outcomes, the text similarity is calculated by subtree matching method, and a semantic classification model based on SWEM and pseudo-twin network is designed for semantic text classification. Finally, the text matching of Korean Peninsula language knowledge base is carried out by applying density clustering algorithm. Experimental results show that the proposed method has high matching recall rate with low space requirements and can effectively match long and short texts concurrently. |
doi_str_mv | 10.1155/2021/5775146 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2582648108</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2582648108</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-1cacd46b76fa3b1d8203ae71a8cf3790623922114a86f6a53d108d64721aaa593</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqWw8QMsMULAdmI7GUv4VItgKFK36Jo4aarULraj0n-Pq3RmuXuH596THoSuKbmnlPMHRhh94FJymogTNKKp5FFG-OI0ZC6TiFC5OEcXzq0JESTmcoR0brRXvz6a7MAqPA8Rf4AvV61u8KRrjG39aoNrY_HUWAUafyndatd3gGegmx4ahafa7DpVhfQIbhgVNho_Ke1av8d51zuvbKi8RGc1dE5dHfcYfb88z_O3aPb5-p5PZlHJssRHtISySsRSihriJa1SRmJQkkJa1rHMiGBxxhilCaSiFsDjipK0EolkFAB4Fo_RzdC7teanV84Xa9NbHV4WjKdMJGk4CNTdQJXWOGdVXWxtuwG7LygpDkaLg9HiaDTgtwMe5FSwa_-n_wAVyHVv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2582648108</pqid></control><display><type>article</type><title>Context-Aware Text Matching Algorithm for Korean Peninsula Language Knowledge Base Based on Density Clustering</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley Online Library Open Access</source><source>Alma/SFX Local Collection</source><creator>Xiang, Li ; ZongXun, Li</creator><contributor>Khan, Fazlullah ; Fazlullah Khan</contributor><creatorcontrib>Xiang, Li ; ZongXun, Li ; Khan, Fazlullah ; Fazlullah Khan</creatorcontrib><description>The majority of the traditional methods deal with text matching at the word level which remains uncertain as the text semantic features are ignored. This also leads to the problems of low recall and high space utilization of text matching while the comprehensiveness of matching results is poor. The resultant method, thus, cannot process long text and short text simultaneously. The current study proposes a text matching algorithm for Korean Peninsula language knowledge base based on density clustering. Using the deep multiview semantic document representation model, the semantic vector of the text to be matched is captured for semantic dependency which is utilized to extract the text semantic features. As per the feature extraction outcomes, the text similarity is calculated by subtree matching method, and a semantic classification model based on SWEM and pseudo-twin network is designed for semantic text classification. Finally, the text matching of Korean Peninsula language knowledge base is carried out by applying density clustering algorithm. Experimental results show that the proposed method has high matching recall rate with low space requirements and can effectively match long and short texts concurrently.</description><identifier>ISSN: 1574-017X</identifier><identifier>EISSN: 1875-905X</identifier><identifier>DOI: 10.1155/2021/5775146</identifier><language>eng</language><publisher>Amsterdam: Hindawi</publisher><subject>Algorithms ; Classification ; Clustering ; Density ; Feature extraction ; Feature selection ; Information retrieval ; Knowledge ; Knowledge bases (artificial intelligence) ; Language ; Matching ; Maximum strategies ; Metadata ; Methods ; Natural language processing ; Neural networks ; Recall ; Semantics</subject><ispartof>Mobile information systems, 2021-10, Vol.2021, p.1-9</ispartof><rights>Copyright © 2021 Li Xiang and Li ZongXun.</rights><rights>Copyright © 2021 Li Xiang and Li ZongXun. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c294t-1cacd46b76fa3b1d8203ae71a8cf3790623922114a86f6a53d108d64721aaa593</cites><orcidid>0000-0002-5400-0669</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><contributor>Khan, Fazlullah</contributor><contributor>Fazlullah Khan</contributor><creatorcontrib>Xiang, Li</creatorcontrib><creatorcontrib>ZongXun, Li</creatorcontrib><title>Context-Aware Text Matching Algorithm for Korean Peninsula Language Knowledge Base Based on Density Clustering</title><title>Mobile information systems</title><description>The majority of the traditional methods deal with text matching at the word level which remains uncertain as the text semantic features are ignored. This also leads to the problems of low recall and high space utilization of text matching while the comprehensiveness of matching results is poor. The resultant method, thus, cannot process long text and short text simultaneously. The current study proposes a text matching algorithm for Korean Peninsula language knowledge base based on density clustering. Using the deep multiview semantic document representation model, the semantic vector of the text to be matched is captured for semantic dependency which is utilized to extract the text semantic features. As per the feature extraction outcomes, the text similarity is calculated by subtree matching method, and a semantic classification model based on SWEM and pseudo-twin network is designed for semantic text classification. Finally, the text matching of Korean Peninsula language knowledge base is carried out by applying density clustering algorithm. Experimental results show that the proposed method has high matching recall rate with low space requirements and can effectively match long and short texts concurrently.</description><subject>Algorithms</subject><subject>Classification</subject><subject>Clustering</subject><subject>Density</subject><subject>Feature extraction</subject><subject>Feature selection</subject><subject>Information retrieval</subject><subject>Knowledge</subject><subject>Knowledge bases (artificial intelligence)</subject><subject>Language</subject><subject>Matching</subject><subject>Maximum strategies</subject><subject>Metadata</subject><subject>Methods</subject><subject>Natural language processing</subject><subject>Neural networks</subject><subject>Recall</subject><subject>Semantics</subject><issn>1574-017X</issn><issn>1875-905X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><recordid>eNp9kD1PwzAQhi0EEqWw8QMsMULAdmI7GUv4VItgKFK36Jo4aarULraj0n-Pq3RmuXuH596THoSuKbmnlPMHRhh94FJymogTNKKp5FFG-OI0ZC6TiFC5OEcXzq0JESTmcoR0brRXvz6a7MAqPA8Rf4AvV61u8KRrjG39aoNrY_HUWAUafyndatd3gGegmx4ahafa7DpVhfQIbhgVNho_Ke1av8d51zuvbKi8RGc1dE5dHfcYfb88z_O3aPb5-p5PZlHJssRHtISySsRSihriJa1SRmJQkkJa1rHMiGBxxhilCaSiFsDjipK0EolkFAB4Fo_RzdC7teanV84Xa9NbHV4WjKdMJGk4CNTdQJXWOGdVXWxtuwG7LygpDkaLg9HiaDTgtwMe5FSwa_-n_wAVyHVv</recordid><startdate>20211007</startdate><enddate>20211007</enddate><creator>Xiang, Li</creator><creator>ZongXun, Li</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-5400-0669</orcidid></search><sort><creationdate>20211007</creationdate><title>Context-Aware Text Matching Algorithm for Korean Peninsula Language Knowledge Base Based on Density Clustering</title><author>Xiang, Li ; ZongXun, Li</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-1cacd46b76fa3b1d8203ae71a8cf3790623922114a86f6a53d108d64721aaa593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Classification</topic><topic>Clustering</topic><topic>Density</topic><topic>Feature extraction</topic><topic>Feature selection</topic><topic>Information retrieval</topic><topic>Knowledge</topic><topic>Knowledge bases (artificial intelligence)</topic><topic>Language</topic><topic>Matching</topic><topic>Maximum strategies</topic><topic>Metadata</topic><topic>Methods</topic><topic>Natural language processing</topic><topic>Neural networks</topic><topic>Recall</topic><topic>Semantics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiang, Li</creatorcontrib><creatorcontrib>ZongXun, Li</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Mobile information systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiang, Li</au><au>ZongXun, Li</au><au>Khan, Fazlullah</au><au>Fazlullah Khan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Context-Aware Text Matching Algorithm for Korean Peninsula Language Knowledge Base Based on Density Clustering</atitle><jtitle>Mobile information systems</jtitle><date>2021-10-07</date><risdate>2021</risdate><volume>2021</volume><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>1574-017X</issn><eissn>1875-905X</eissn><abstract>The majority of the traditional methods deal with text matching at the word level which remains uncertain as the text semantic features are ignored. This also leads to the problems of low recall and high space utilization of text matching while the comprehensiveness of matching results is poor. The resultant method, thus, cannot process long text and short text simultaneously. The current study proposes a text matching algorithm for Korean Peninsula language knowledge base based on density clustering. Using the deep multiview semantic document representation model, the semantic vector of the text to be matched is captured for semantic dependency which is utilized to extract the text semantic features. As per the feature extraction outcomes, the text similarity is calculated by subtree matching method, and a semantic classification model based on SWEM and pseudo-twin network is designed for semantic text classification. Finally, the text matching of Korean Peninsula language knowledge base is carried out by applying density clustering algorithm. Experimental results show that the proposed method has high matching recall rate with low space requirements and can effectively match long and short texts concurrently.</abstract><cop>Amsterdam</cop><pub>Hindawi</pub><doi>10.1155/2021/5775146</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-5400-0669</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1574-017X |
ispartof | Mobile information systems, 2021-10, Vol.2021, p.1-9 |
issn | 1574-017X 1875-905X |
language | eng |
recordid | cdi_proquest_journals_2582648108 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley Online Library Open Access; Alma/SFX Local Collection |
subjects | Algorithms Classification Clustering Density Feature extraction Feature selection Information retrieval Knowledge Knowledge bases (artificial intelligence) Language Matching Maximum strategies Metadata Methods Natural language processing Neural networks Recall Semantics |
title | Context-Aware Text Matching Algorithm for Korean Peninsula Language Knowledge Base Based on Density Clustering |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T18%3A48%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Context-Aware%20Text%20Matching%20Algorithm%20for%20Korean%20Peninsula%20Language%20Knowledge%20Base%20Based%20on%20Density%20Clustering&rft.jtitle=Mobile%20information%20systems&rft.au=Xiang,%20Li&rft.date=2021-10-07&rft.volume=2021&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=1574-017X&rft.eissn=1875-905X&rft_id=info:doi/10.1155/2021/5775146&rft_dat=%3Cproquest_cross%3E2582648108%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2582648108&rft_id=info:pmid/&rfr_iscdi=true |