Spectral Fluctuations for Schrödinger Operators with a Random Decaying Potential

We study fluctuations of polynomial linear statistics for discrete Schrödinger operators with a random decaying potential. We describe a decomposition of the space of polynomials into a direct sum of three subspaces determining the growth rate of the variance of the corresponding linear statistic. I...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annales Henri Poincaré 2021-11, Vol.22 (11), p.3763-3794
Hauptverfasser: Breuer, Jonathan, Grinshpon, Yoel, White, Moshe J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study fluctuations of polynomial linear statistics for discrete Schrödinger operators with a random decaying potential. We describe a decomposition of the space of polynomials into a direct sum of three subspaces determining the growth rate of the variance of the corresponding linear statistic. In particular, each one of these subspaces defines a unique critical value for the decay-rate exponent, above which the random variable has a limit that is sensitive to the underlying distribution and below which the random variable has asymptotically Gaussian fluctuations.
ISSN:1424-0637
1424-0661
DOI:10.1007/s00023-021-01082-9