Spectral Fluctuations for Schrödinger Operators with a Random Decaying Potential
We study fluctuations of polynomial linear statistics for discrete Schrödinger operators with a random decaying potential. We describe a decomposition of the space of polynomials into a direct sum of three subspaces determining the growth rate of the variance of the corresponding linear statistic. I...
Gespeichert in:
Veröffentlicht in: | Annales Henri Poincaré 2021-11, Vol.22 (11), p.3763-3794 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study fluctuations of polynomial linear statistics for discrete Schrödinger operators with a random decaying potential. We describe a decomposition of the space of polynomials into a direct sum of three subspaces determining the growth rate of the variance of the corresponding linear statistic. In particular, each one of these subspaces defines a unique critical value for the decay-rate exponent, above which the random variable has a limit that is sensitive to the underlying distribution and below which the random variable has asymptotically Gaussian fluctuations. |
---|---|
ISSN: | 1424-0637 1424-0661 |
DOI: | 10.1007/s00023-021-01082-9 |