Pre- and post-failure spatiotemporal evolution of loess landslides: a case study of the Jiangou landslide in Ledu, China
Information about the long-term spatiotemporal evolution of landslides can improve our understanding of the landslide development process and can help prevent landslide disasters. However, few studies have been devoted to the pre- and post-failure spatiotemporal evolution process and pattern of land...
Gespeichert in:
Veröffentlicht in: | Landslides 2021-10, Vol.18 (10), p.3475-3484 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3484 |
---|---|
container_issue | 10 |
container_start_page | 3475 |
container_title | Landslides |
container_volume | 18 |
creator | Zhu, Yaru Qiu, Haijun Yang, Dongdong Liu, Zijing Ma, Shuyue Pei, Yanqian He, Jianyin Du, Chi Sun, Hesheng |
description | Information about the long-term spatiotemporal evolution of landslides can improve our understanding of the landslide development process and can help prevent landslide disasters. However, few studies have been devoted to the pre- and post-failure spatiotemporal evolution process and pattern of landslides. Therefore, we studied the pre- and post-failure geomorphic changes and spatiotemporal evolution of the 2019 Jiangou landslide based on field investigations, interferometric synthetic aperture radar (InSAR), unmanned aerial vehicle (UAV) observations, and remote sensing techniques. The results show that the volume of the deposition of the Jiangou landslide is less than the depletion volume, which means the remaining landslide materials were washed away when the dammed lake collapsed. Moreover, the InSAR technique has an advantage in terms of the retrieval of pre- and post-failure creep deformation. Our analysis suggests that the Jiangou landslide has experienced long-term creep. Potential landslide risks still exist after the previous failure event. Furthermore, we found that the pre- and post-failure spatiotemporal deformation processes and evolutionary patterns of the landslide are different. The pre-failure evolutionary pattern of the landslide is a progressive failure mode, while the post-failure evolutionary pattern is a retrogressive failure mode. This evolution provides a reference for local governments to further monitor or take effective prevention measures against future landslide failures. |
doi_str_mv | 10.1007/s10346-021-01714-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2582481665</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2582481665</sourcerecordid><originalsourceid>FETCH-LOGICAL-a342t-5330022489d46a75f3136af83fbed5f8bc519a9b8b8d9d68ae45d6b6e812e403</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWC8v4Crg1mgukzTjTopXCrrowl3INCftlOlkTGbEvr2pFbtzlUP4vv8cfoQuGL1mlI5vEqOiUIRyRigbs4LIAzRiinEiGdOHfzN9P0YnKa0o5SUV5Qh9vUUg2LYOdyH1xNu6GSLg1Nm-Dj2suxBtg-EzNEP-aHHwuAmQEm6yk5raQbrFFs9tylI_uM2W6JeAX2rbLsKw53Dd4im44QpPlnVrz9CRt02C89_3FM0e7meTJzJ9fXye3E2JFQXviRQi38oLXbpC2bH0ggllvRa-Aie9ruaSlbasdKVd6ZS2UEinKgWacSioOEWXu9guho8BUm9WYYht3mi41DmXKSUzxXfUPIaUInjTxXpt48YwarYFm13BJhdsfgo2W0nspJThdgFxH_2P9Q0Aa36n</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2582481665</pqid></control><display><type>article</type><title>Pre- and post-failure spatiotemporal evolution of loess landslides: a case study of the Jiangou landslide in Ledu, China</title><source>SpringerLink Journals</source><creator>Zhu, Yaru ; Qiu, Haijun ; Yang, Dongdong ; Liu, Zijing ; Ma, Shuyue ; Pei, Yanqian ; He, Jianyin ; Du, Chi ; Sun, Hesheng</creator><creatorcontrib>Zhu, Yaru ; Qiu, Haijun ; Yang, Dongdong ; Liu, Zijing ; Ma, Shuyue ; Pei, Yanqian ; He, Jianyin ; Du, Chi ; Sun, Hesheng</creatorcontrib><description>Information about the long-term spatiotemporal evolution of landslides can improve our understanding of the landslide development process and can help prevent landslide disasters. However, few studies have been devoted to the pre- and post-failure spatiotemporal evolution process and pattern of landslides. Therefore, we studied the pre- and post-failure geomorphic changes and spatiotemporal evolution of the 2019 Jiangou landslide based on field investigations, interferometric synthetic aperture radar (InSAR), unmanned aerial vehicle (UAV) observations, and remote sensing techniques. The results show that the volume of the deposition of the Jiangou landslide is less than the depletion volume, which means the remaining landslide materials were washed away when the dammed lake collapsed. Moreover, the InSAR technique has an advantage in terms of the retrieval of pre- and post-failure creep deformation. Our analysis suggests that the Jiangou landslide has experienced long-term creep. Potential landslide risks still exist after the previous failure event. Furthermore, we found that the pre- and post-failure spatiotemporal deformation processes and evolutionary patterns of the landslide are different. The pre-failure evolutionary pattern of the landslide is a progressive failure mode, while the post-failure evolutionary pattern is a retrogressive failure mode. This evolution provides a reference for local governments to further monitor or take effective prevention measures against future landslide failures.</description><identifier>ISSN: 1612-510X</identifier><identifier>EISSN: 1612-5118</identifier><identifier>DOI: 10.1007/s10346-021-01714-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Agriculture ; Civil Engineering ; Creep strength ; Deformation ; Deformation analysis ; Depletion ; Disasters ; Earth and Environmental Science ; Earth Sciences ; Environmental risk ; Evolution ; Failure ; Failure analysis ; Failure modes ; Field investigations ; Field tests ; Geography ; Geomorphology ; Interferometric synthetic aperture radar ; Lakes ; Landslides ; Landslides & mudslides ; Local government ; Loess ; Natural Hazards ; Remote sensing ; Remote sensing techniques ; SAR (radar) ; Sensing techniques ; Solifluction ; Synthetic aperture radar ; Synthetic aperture radar interferometry ; Technical Note ; Unmanned aerial vehicles</subject><ispartof>Landslides, 2021-10, Vol.18 (10), p.3475-3484</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a342t-5330022489d46a75f3136af83fbed5f8bc519a9b8b8d9d68ae45d6b6e812e403</citedby><cites>FETCH-LOGICAL-a342t-5330022489d46a75f3136af83fbed5f8bc519a9b8b8d9d68ae45d6b6e812e403</cites><orcidid>0000-0003-0263-0025</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10346-021-01714-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10346-021-01714-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Zhu, Yaru</creatorcontrib><creatorcontrib>Qiu, Haijun</creatorcontrib><creatorcontrib>Yang, Dongdong</creatorcontrib><creatorcontrib>Liu, Zijing</creatorcontrib><creatorcontrib>Ma, Shuyue</creatorcontrib><creatorcontrib>Pei, Yanqian</creatorcontrib><creatorcontrib>He, Jianyin</creatorcontrib><creatorcontrib>Du, Chi</creatorcontrib><creatorcontrib>Sun, Hesheng</creatorcontrib><title>Pre- and post-failure spatiotemporal evolution of loess landslides: a case study of the Jiangou landslide in Ledu, China</title><title>Landslides</title><addtitle>Landslides</addtitle><description>Information about the long-term spatiotemporal evolution of landslides can improve our understanding of the landslide development process and can help prevent landslide disasters. However, few studies have been devoted to the pre- and post-failure spatiotemporal evolution process and pattern of landslides. Therefore, we studied the pre- and post-failure geomorphic changes and spatiotemporal evolution of the 2019 Jiangou landslide based on field investigations, interferometric synthetic aperture radar (InSAR), unmanned aerial vehicle (UAV) observations, and remote sensing techniques. The results show that the volume of the deposition of the Jiangou landslide is less than the depletion volume, which means the remaining landslide materials were washed away when the dammed lake collapsed. Moreover, the InSAR technique has an advantage in terms of the retrieval of pre- and post-failure creep deformation. Our analysis suggests that the Jiangou landslide has experienced long-term creep. Potential landslide risks still exist after the previous failure event. Furthermore, we found that the pre- and post-failure spatiotemporal deformation processes and evolutionary patterns of the landslide are different. The pre-failure evolutionary pattern of the landslide is a progressive failure mode, while the post-failure evolutionary pattern is a retrogressive failure mode. This evolution provides a reference for local governments to further monitor or take effective prevention measures against future landslide failures.</description><subject>Agriculture</subject><subject>Civil Engineering</subject><subject>Creep strength</subject><subject>Deformation</subject><subject>Deformation analysis</subject><subject>Depletion</subject><subject>Disasters</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Environmental risk</subject><subject>Evolution</subject><subject>Failure</subject><subject>Failure analysis</subject><subject>Failure modes</subject><subject>Field investigations</subject><subject>Field tests</subject><subject>Geography</subject><subject>Geomorphology</subject><subject>Interferometric synthetic aperture radar</subject><subject>Lakes</subject><subject>Landslides</subject><subject>Landslides & mudslides</subject><subject>Local government</subject><subject>Loess</subject><subject>Natural Hazards</subject><subject>Remote sensing</subject><subject>Remote sensing techniques</subject><subject>SAR (radar)</subject><subject>Sensing techniques</subject><subject>Solifluction</subject><subject>Synthetic aperture radar</subject><subject>Synthetic aperture radar interferometry</subject><subject>Technical Note</subject><subject>Unmanned aerial vehicles</subject><issn>1612-510X</issn><issn>1612-5118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kMtKAzEUhoMoWC8v4Crg1mgukzTjTopXCrrowl3INCftlOlkTGbEvr2pFbtzlUP4vv8cfoQuGL1mlI5vEqOiUIRyRigbs4LIAzRiinEiGdOHfzN9P0YnKa0o5SUV5Qh9vUUg2LYOdyH1xNu6GSLg1Nm-Dj2suxBtg-EzNEP-aHHwuAmQEm6yk5raQbrFFs9tylI_uM2W6JeAX2rbLsKw53Dd4im44QpPlnVrz9CRt02C89_3FM0e7meTJzJ9fXye3E2JFQXviRQi38oLXbpC2bH0ggllvRa-Aie9ruaSlbasdKVd6ZS2UEinKgWacSioOEWXu9guho8BUm9WYYht3mi41DmXKSUzxXfUPIaUInjTxXpt48YwarYFm13BJhdsfgo2W0nspJThdgFxH_2P9Q0Aa36n</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Zhu, Yaru</creator><creator>Qiu, Haijun</creator><creator>Yang, Dongdong</creator><creator>Liu, Zijing</creator><creator>Ma, Shuyue</creator><creator>Pei, Yanqian</creator><creator>He, Jianyin</creator><creator>Du, Chi</creator><creator>Sun, Hesheng</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-0263-0025</orcidid></search><sort><creationdate>20211001</creationdate><title>Pre- and post-failure spatiotemporal evolution of loess landslides: a case study of the Jiangou landslide in Ledu, China</title><author>Zhu, Yaru ; Qiu, Haijun ; Yang, Dongdong ; Liu, Zijing ; Ma, Shuyue ; Pei, Yanqian ; He, Jianyin ; Du, Chi ; Sun, Hesheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a342t-5330022489d46a75f3136af83fbed5f8bc519a9b8b8d9d68ae45d6b6e812e403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Agriculture</topic><topic>Civil Engineering</topic><topic>Creep strength</topic><topic>Deformation</topic><topic>Deformation analysis</topic><topic>Depletion</topic><topic>Disasters</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Environmental risk</topic><topic>Evolution</topic><topic>Failure</topic><topic>Failure analysis</topic><topic>Failure modes</topic><topic>Field investigations</topic><topic>Field tests</topic><topic>Geography</topic><topic>Geomorphology</topic><topic>Interferometric synthetic aperture radar</topic><topic>Lakes</topic><topic>Landslides</topic><topic>Landslides & mudslides</topic><topic>Local government</topic><topic>Loess</topic><topic>Natural Hazards</topic><topic>Remote sensing</topic><topic>Remote sensing techniques</topic><topic>SAR (radar)</topic><topic>Sensing techniques</topic><topic>Solifluction</topic><topic>Synthetic aperture radar</topic><topic>Synthetic aperture radar interferometry</topic><topic>Technical Note</topic><topic>Unmanned aerial vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Yaru</creatorcontrib><creatorcontrib>Qiu, Haijun</creatorcontrib><creatorcontrib>Yang, Dongdong</creatorcontrib><creatorcontrib>Liu, Zijing</creatorcontrib><creatorcontrib>Ma, Shuyue</creatorcontrib><creatorcontrib>Pei, Yanqian</creatorcontrib><creatorcontrib>He, Jianyin</creatorcontrib><creatorcontrib>Du, Chi</creatorcontrib><creatorcontrib>Sun, Hesheng</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Landslides</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Yaru</au><au>Qiu, Haijun</au><au>Yang, Dongdong</au><au>Liu, Zijing</au><au>Ma, Shuyue</au><au>Pei, Yanqian</au><au>He, Jianyin</au><au>Du, Chi</au><au>Sun, Hesheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pre- and post-failure spatiotemporal evolution of loess landslides: a case study of the Jiangou landslide in Ledu, China</atitle><jtitle>Landslides</jtitle><stitle>Landslides</stitle><date>2021-10-01</date><risdate>2021</risdate><volume>18</volume><issue>10</issue><spage>3475</spage><epage>3484</epage><pages>3475-3484</pages><issn>1612-510X</issn><eissn>1612-5118</eissn><abstract>Information about the long-term spatiotemporal evolution of landslides can improve our understanding of the landslide development process and can help prevent landslide disasters. However, few studies have been devoted to the pre- and post-failure spatiotemporal evolution process and pattern of landslides. Therefore, we studied the pre- and post-failure geomorphic changes and spatiotemporal evolution of the 2019 Jiangou landslide based on field investigations, interferometric synthetic aperture radar (InSAR), unmanned aerial vehicle (UAV) observations, and remote sensing techniques. The results show that the volume of the deposition of the Jiangou landslide is less than the depletion volume, which means the remaining landslide materials were washed away when the dammed lake collapsed. Moreover, the InSAR technique has an advantage in terms of the retrieval of pre- and post-failure creep deformation. Our analysis suggests that the Jiangou landslide has experienced long-term creep. Potential landslide risks still exist after the previous failure event. Furthermore, we found that the pre- and post-failure spatiotemporal deformation processes and evolutionary patterns of the landslide are different. The pre-failure evolutionary pattern of the landslide is a progressive failure mode, while the post-failure evolutionary pattern is a retrogressive failure mode. This evolution provides a reference for local governments to further monitor or take effective prevention measures against future landslide failures.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10346-021-01714-5</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-0263-0025</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1612-510X |
ispartof | Landslides, 2021-10, Vol.18 (10), p.3475-3484 |
issn | 1612-510X 1612-5118 |
language | eng |
recordid | cdi_proquest_journals_2582481665 |
source | SpringerLink Journals |
subjects | Agriculture Civil Engineering Creep strength Deformation Deformation analysis Depletion Disasters Earth and Environmental Science Earth Sciences Environmental risk Evolution Failure Failure analysis Failure modes Field investigations Field tests Geography Geomorphology Interferometric synthetic aperture radar Lakes Landslides Landslides & mudslides Local government Loess Natural Hazards Remote sensing Remote sensing techniques SAR (radar) Sensing techniques Solifluction Synthetic aperture radar Synthetic aperture radar interferometry Technical Note Unmanned aerial vehicles |
title | Pre- and post-failure spatiotemporal evolution of loess landslides: a case study of the Jiangou landslide in Ledu, China |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T11%3A29%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pre-%20and%20post-failure%20spatiotemporal%20evolution%20of%20loess%20landslides:%20a%20case%20study%20of%20the%20Jiangou%20landslide%20in%20Ledu,%20China&rft.jtitle=Landslides&rft.au=Zhu,%20Yaru&rft.date=2021-10-01&rft.volume=18&rft.issue=10&rft.spage=3475&rft.epage=3484&rft.pages=3475-3484&rft.issn=1612-510X&rft.eissn=1612-5118&rft_id=info:doi/10.1007/s10346-021-01714-5&rft_dat=%3Cproquest_cross%3E2582481665%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2582481665&rft_id=info:pmid/&rfr_iscdi=true |