Reduction of Errors in Hydrological Drought Monitoring – A Novel Statistical Framework for Spatio-Temporal Assessment of Drought

Continuous and accurate drought monitoring has an important role in early warning drought mitigation policies. This study aims to provide an accurate standardized drought monitoring indicator by enhancing the representative characteristics of precipitation data using advanced statistical methods. We...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water resources management 2021-10, Vol.35 (13), p.4363-4380
Hauptverfasser: Ali, Zulfiqar, Ellahi, Asad, Hussain, Ijaz, Nazeer, Amna, Qamar, Sadia, Ni, Guangheng, Faisal, Muhammad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4380
container_issue 13
container_start_page 4363
container_title Water resources management
container_volume 35
creator Ali, Zulfiqar
Ellahi, Asad
Hussain, Ijaz
Nazeer, Amna
Qamar, Sadia
Ni, Guangheng
Faisal, Muhammad
description Continuous and accurate drought monitoring has an important role in early warning drought mitigation policies. This study aims to provide an accurate standardized drought monitoring indicator by enhancing the representative characteristics of precipitation data using advanced statistical methods. We proposed a two-phase statistical procedure index – the Regional Multi-Component Gaussian Hydrological Drought Assessment (RMcGHDA) – for accurate drought monitoring under a multi-auxiliary variable-based sampling estimator and K-Component Gaussian Mixture Distribution (CGMD) model. The first phase of our proposed method increases the regional representativeness of the data under Spatio-temporal settings and the second phase describes the use of the Twelve-Component Gaussian Mixture Distribution (CGMD) model in the standardization stage of SDIs. We applied the proposed framework to 52 meteorological stations in Pakistan and compared the RMcGHDA performance with existing methods using Pearson correlation (r) and spatial patterns of various drought categories. We found significant differences between RMcGHDA and existing methods (i.e., Standardized Precipitation Index (SPI) and Standardized Precipitation Evapotranspiration Index (SPEI)) for drought assessment. By the rationale of the data improvement under-sampling estimator and the use of multi-component Gaussian function, these differences indicate that RMcGHDA provides a practical and accurate way for drought assessment.
doi_str_mv 10.1007/s11269-021-02952-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2582477345</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2582477345</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-92554741f61200bf9ae6a722f01f52c9e5c353c553834c3aa89729b41163fccd3</originalsourceid><addsrcrecordid>eNp9kM1OAjEQxxujiYi-gKcmnlf7sd2lR4IoJqiJ4LkppcVF2K7TonAzvoJv6JO4CyTePEzmMP-PzA-hc0ouKSH5VaCUZTIhjNYjBUvWB6hFRc4TmglyiFpEMpKkeUqP0UkIc0JqmyQt9PVkpysTC19i73AfwEPARYkHmyn4hZ8VRi_wNfjV7CXie18W0UNRzvDP5zfu4gf_bhd4FHUsQtxKb0Av7YeHV-w84FFVX3wytsvKQ33thmBDWNoyNm372FN05PQi2LP9bqPnm_64N0iGj7d3ve4wMZzKmEgmRPOAyygjZOKktpnOGXOEOsGMtMJwwY0QvMNTw7XuyJzJSUppxp0xU95GF7vcCvzbyoao5n4FZV2pmOiwNM95KmoV26kM-BDAOlVBsdSwUZSohrXasVY1a7Vlrda1ie9MoWroWPiL_sf1C_7DhEA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2582477345</pqid></control><display><type>article</type><title>Reduction of Errors in Hydrological Drought Monitoring – A Novel Statistical Framework for Spatio-Temporal Assessment of Drought</title><source>SpringerLink Journals</source><creator>Ali, Zulfiqar ; Ellahi, Asad ; Hussain, Ijaz ; Nazeer, Amna ; Qamar, Sadia ; Ni, Guangheng ; Faisal, Muhammad</creator><creatorcontrib>Ali, Zulfiqar ; Ellahi, Asad ; Hussain, Ijaz ; Nazeer, Amna ; Qamar, Sadia ; Ni, Guangheng ; Faisal, Muhammad</creatorcontrib><description>Continuous and accurate drought monitoring has an important role in early warning drought mitigation policies. This study aims to provide an accurate standardized drought monitoring indicator by enhancing the representative characteristics of precipitation data using advanced statistical methods. We proposed a two-phase statistical procedure index – the Regional Multi-Component Gaussian Hydrological Drought Assessment (RMcGHDA) – for accurate drought monitoring under a multi-auxiliary variable-based sampling estimator and K-Component Gaussian Mixture Distribution (CGMD) model. The first phase of our proposed method increases the regional representativeness of the data under Spatio-temporal settings and the second phase describes the use of the Twelve-Component Gaussian Mixture Distribution (CGMD) model in the standardization stage of SDIs. We applied the proposed framework to 52 meteorological stations in Pakistan and compared the RMcGHDA performance with existing methods using Pearson correlation (r) and spatial patterns of various drought categories. We found significant differences between RMcGHDA and existing methods (i.e., Standardized Precipitation Index (SPI) and Standardized Precipitation Evapotranspiration Index (SPEI)) for drought assessment. By the rationale of the data improvement under-sampling estimator and the use of multi-component Gaussian function, these differences indicate that RMcGHDA provides a practical and accurate way for drought assessment.</description><identifier>ISSN: 0920-4741</identifier><identifier>EISSN: 1573-1650</identifier><identifier>DOI: 10.1007/s11269-021-02952-x</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Atmospheric Sciences ; Civil Engineering ; Distribution ; Drought ; Earth and Environmental Science ; Earth Sciences ; Environment ; Environmental monitoring ; Evapotranspiration ; Geotechnical Engineering &amp; Applied Earth Sciences ; Hydrogeology ; Hydrologic data ; Hydrology ; Hydrology/Water Resources ; Mitigation ; Normal distribution ; Precipitation ; Sampling ; Standardization ; Standardized precipitation index ; Statistical methods ; Statistics ; Weather stations</subject><ispartof>Water resources management, 2021-10, Vol.35 (13), p.4363-4380</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-92554741f61200bf9ae6a722f01f52c9e5c353c553834c3aa89729b41163fccd3</citedby><cites>FETCH-LOGICAL-c319t-92554741f61200bf9ae6a722f01f52c9e5c353c553834c3aa89729b41163fccd3</cites><orcidid>0000-0001-9291-8342</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11269-021-02952-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11269-021-02952-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Ali, Zulfiqar</creatorcontrib><creatorcontrib>Ellahi, Asad</creatorcontrib><creatorcontrib>Hussain, Ijaz</creatorcontrib><creatorcontrib>Nazeer, Amna</creatorcontrib><creatorcontrib>Qamar, Sadia</creatorcontrib><creatorcontrib>Ni, Guangheng</creatorcontrib><creatorcontrib>Faisal, Muhammad</creatorcontrib><title>Reduction of Errors in Hydrological Drought Monitoring – A Novel Statistical Framework for Spatio-Temporal Assessment of Drought</title><title>Water resources management</title><addtitle>Water Resour Manage</addtitle><description>Continuous and accurate drought monitoring has an important role in early warning drought mitigation policies. This study aims to provide an accurate standardized drought monitoring indicator by enhancing the representative characteristics of precipitation data using advanced statistical methods. We proposed a two-phase statistical procedure index – the Regional Multi-Component Gaussian Hydrological Drought Assessment (RMcGHDA) – for accurate drought monitoring under a multi-auxiliary variable-based sampling estimator and K-Component Gaussian Mixture Distribution (CGMD) model. The first phase of our proposed method increases the regional representativeness of the data under Spatio-temporal settings and the second phase describes the use of the Twelve-Component Gaussian Mixture Distribution (CGMD) model in the standardization stage of SDIs. We applied the proposed framework to 52 meteorological stations in Pakistan and compared the RMcGHDA performance with existing methods using Pearson correlation (r) and spatial patterns of various drought categories. We found significant differences between RMcGHDA and existing methods (i.e., Standardized Precipitation Index (SPI) and Standardized Precipitation Evapotranspiration Index (SPEI)) for drought assessment. By the rationale of the data improvement under-sampling estimator and the use of multi-component Gaussian function, these differences indicate that RMcGHDA provides a practical and accurate way for drought assessment.</description><subject>Atmospheric Sciences</subject><subject>Civil Engineering</subject><subject>Distribution</subject><subject>Drought</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Environment</subject><subject>Environmental monitoring</subject><subject>Evapotranspiration</subject><subject>Geotechnical Engineering &amp; Applied Earth Sciences</subject><subject>Hydrogeology</subject><subject>Hydrologic data</subject><subject>Hydrology</subject><subject>Hydrology/Water Resources</subject><subject>Mitigation</subject><subject>Normal distribution</subject><subject>Precipitation</subject><subject>Sampling</subject><subject>Standardization</subject><subject>Standardized precipitation index</subject><subject>Statistical methods</subject><subject>Statistics</subject><subject>Weather stations</subject><issn>0920-4741</issn><issn>1573-1650</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kM1OAjEQxxujiYi-gKcmnlf7sd2lR4IoJqiJ4LkppcVF2K7TonAzvoJv6JO4CyTePEzmMP-PzA-hc0ouKSH5VaCUZTIhjNYjBUvWB6hFRc4TmglyiFpEMpKkeUqP0UkIc0JqmyQt9PVkpysTC19i73AfwEPARYkHmyn4hZ8VRi_wNfjV7CXie18W0UNRzvDP5zfu4gf_bhd4FHUsQtxKb0Av7YeHV-w84FFVX3wytsvKQ33thmBDWNoyNm372FN05PQi2LP9bqPnm_64N0iGj7d3ve4wMZzKmEgmRPOAyygjZOKktpnOGXOEOsGMtMJwwY0QvMNTw7XuyJzJSUppxp0xU95GF7vcCvzbyoao5n4FZV2pmOiwNM95KmoV26kM-BDAOlVBsdSwUZSohrXasVY1a7Vlrda1ie9MoWroWPiL_sf1C_7DhEA</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Ali, Zulfiqar</creator><creator>Ellahi, Asad</creator><creator>Hussain, Ijaz</creator><creator>Nazeer, Amna</creator><creator>Qamar, Sadia</creator><creator>Ni, Guangheng</creator><creator>Faisal, Muhammad</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7ST</scope><scope>7UA</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>H97</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>KR7</scope><scope>L.-</scope><scope>L.G</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M2P</scope><scope>M7P</scope><scope>M7S</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-9291-8342</orcidid></search><sort><creationdate>20211001</creationdate><title>Reduction of Errors in Hydrological Drought Monitoring – A Novel Statistical Framework for Spatio-Temporal Assessment of Drought</title><author>Ali, Zulfiqar ; Ellahi, Asad ; Hussain, Ijaz ; Nazeer, Amna ; Qamar, Sadia ; Ni, Guangheng ; Faisal, Muhammad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-92554741f61200bf9ae6a722f01f52c9e5c353c553834c3aa89729b41163fccd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Atmospheric Sciences</topic><topic>Civil Engineering</topic><topic>Distribution</topic><topic>Drought</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Environment</topic><topic>Environmental monitoring</topic><topic>Evapotranspiration</topic><topic>Geotechnical Engineering &amp; Applied Earth Sciences</topic><topic>Hydrogeology</topic><topic>Hydrologic data</topic><topic>Hydrology</topic><topic>Hydrology/Water Resources</topic><topic>Mitigation</topic><topic>Normal distribution</topic><topic>Precipitation</topic><topic>Sampling</topic><topic>Standardization</topic><topic>Standardized precipitation index</topic><topic>Statistical methods</topic><topic>Statistics</topic><topic>Weather stations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ali, Zulfiqar</creatorcontrib><creatorcontrib>Ellahi, Asad</creatorcontrib><creatorcontrib>Hussain, Ijaz</creatorcontrib><creatorcontrib>Nazeer, Amna</creatorcontrib><creatorcontrib>Qamar, Sadia</creatorcontrib><creatorcontrib>Ni, Guangheng</creatorcontrib><creatorcontrib>Faisal, Muhammad</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Water resources management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ali, Zulfiqar</au><au>Ellahi, Asad</au><au>Hussain, Ijaz</au><au>Nazeer, Amna</au><au>Qamar, Sadia</au><au>Ni, Guangheng</au><au>Faisal, Muhammad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reduction of Errors in Hydrological Drought Monitoring – A Novel Statistical Framework for Spatio-Temporal Assessment of Drought</atitle><jtitle>Water resources management</jtitle><stitle>Water Resour Manage</stitle><date>2021-10-01</date><risdate>2021</risdate><volume>35</volume><issue>13</issue><spage>4363</spage><epage>4380</epage><pages>4363-4380</pages><issn>0920-4741</issn><eissn>1573-1650</eissn><abstract>Continuous and accurate drought monitoring has an important role in early warning drought mitigation policies. This study aims to provide an accurate standardized drought monitoring indicator by enhancing the representative characteristics of precipitation data using advanced statistical methods. We proposed a two-phase statistical procedure index – the Regional Multi-Component Gaussian Hydrological Drought Assessment (RMcGHDA) – for accurate drought monitoring under a multi-auxiliary variable-based sampling estimator and K-Component Gaussian Mixture Distribution (CGMD) model. The first phase of our proposed method increases the regional representativeness of the data under Spatio-temporal settings and the second phase describes the use of the Twelve-Component Gaussian Mixture Distribution (CGMD) model in the standardization stage of SDIs. We applied the proposed framework to 52 meteorological stations in Pakistan and compared the RMcGHDA performance with existing methods using Pearson correlation (r) and spatial patterns of various drought categories. We found significant differences between RMcGHDA and existing methods (i.e., Standardized Precipitation Index (SPI) and Standardized Precipitation Evapotranspiration Index (SPEI)) for drought assessment. By the rationale of the data improvement under-sampling estimator and the use of multi-component Gaussian function, these differences indicate that RMcGHDA provides a practical and accurate way for drought assessment.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11269-021-02952-x</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-9291-8342</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0920-4741
ispartof Water resources management, 2021-10, Vol.35 (13), p.4363-4380
issn 0920-4741
1573-1650
language eng
recordid cdi_proquest_journals_2582477345
source SpringerLink Journals
subjects Atmospheric Sciences
Civil Engineering
Distribution
Drought
Earth and Environmental Science
Earth Sciences
Environment
Environmental monitoring
Evapotranspiration
Geotechnical Engineering & Applied Earth Sciences
Hydrogeology
Hydrologic data
Hydrology
Hydrology/Water Resources
Mitigation
Normal distribution
Precipitation
Sampling
Standardization
Standardized precipitation index
Statistical methods
Statistics
Weather stations
title Reduction of Errors in Hydrological Drought Monitoring – A Novel Statistical Framework for Spatio-Temporal Assessment of Drought
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T03%3A10%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reduction%20of%20Errors%20in%20Hydrological%20Drought%20Monitoring%20%E2%80%93%20A%20Novel%20Statistical%20Framework%20for%20Spatio-Temporal%20Assessment%20of%20Drought&rft.jtitle=Water%20resources%20management&rft.au=Ali,%20Zulfiqar&rft.date=2021-10-01&rft.volume=35&rft.issue=13&rft.spage=4363&rft.epage=4380&rft.pages=4363-4380&rft.issn=0920-4741&rft.eissn=1573-1650&rft_id=info:doi/10.1007/s11269-021-02952-x&rft_dat=%3Cproquest_cross%3E2582477345%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2582477345&rft_id=info:pmid/&rfr_iscdi=true