Coupling microwave photons to topological spin textures in Cu2OSeO3

Topologically protected nanoscale spin textures, known as magnetic skyrmions, possess particlelike properties and feature emergent magnetism effects. In bulk cubic helimagnets, distinct skyrmion resonant modes are already identified using a technique such as ferromagnetic resonance in spintronics. H...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B 2021-09, Vol.104 (10), p.1
Hauptverfasser: Khan, S, Lee, O, Dion, T, Zollitsch, C W, Seki, S, Tokura, Y, Breeze, J D, Kurebayashi, H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 10
container_start_page 1
container_title Physical review. B
container_volume 104
creator Khan, S
Lee, O
Dion, T
Zollitsch, C W
Seki, S
Tokura, Y
Breeze, J D
Kurebayashi, H
description Topologically protected nanoscale spin textures, known as magnetic skyrmions, possess particlelike properties and feature emergent magnetism effects. In bulk cubic helimagnets, distinct skyrmion resonant modes are already identified using a technique such as ferromagnetic resonance in spintronics. However, direct light-matter coupling between microwave photons and skyrmion resonance modes still needs to be demonstrated. Utilizing two distinct cavity systems, we observe a direct interaction between the cavity resonant mode and two resonant skyrmion modes, the counterclockwise gyration and breathing modes, in bulk Cu2OSeO3. For both resonant modes, we find the largest coupling strength at 57 K indicated by an enhancement of the cavity linewidth at the degeneracy point. We study the effective coupling strength as a function of temperature within the expected skyrmion phase. We attribute the maximum in effective coupling strength to the presence of a large number of skyrmions, and correspondingly to a completely stable skyrmion lattice. Our experimental findings indicate that the coupling between photons and resonant modes of magnetic skyrmions depends on the relative density of these topological particles instead of the pure spin number in the system.
doi_str_mv 10.1103/PhysRevB.104.L100402
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2582437833</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2582437833</sourcerecordid><originalsourceid>FETCH-LOGICAL-p183t-5bd79b0a0f339db093be486ba2023ac0edc3d009ccdbf8fd3f5b033372fb77193</originalsourceid><addsrcrecordid>eNo9jV1LwzAYhYMoOOb-gRcBrzvf5G2b5lKLOqFQ8eN65KtbR21i00799xYU4cB5Lh7OIeSSwZoxwOun_Xd8dsfbNYN0XTGAFPgJWfA0l4mUuTz95wzOySrGAwCwHKQAuSBl6afQtf2Ovrdm8J_q6GjY-9H3kY5-TvCd37VGdTSGtqej-xqnwUU6cznx-sXVeEHOGtVFt_rrJXm7v3stN0lVPzyWN1USWIFjkmkrpAYFDaK0GiRqlxa5Vhw4KgPOGrQA0hirm6Kx2GQaEFHwRgvBJC7J1e9uGPzH5OK4Pfhp6OfLLc8KnqIoZv0HVzlP1w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2582437833</pqid></control><display><type>article</type><title>Coupling microwave photons to topological spin textures in Cu2OSeO3</title><source>American Physical Society Journals</source><creator>Khan, S ; Lee, O ; Dion, T ; Zollitsch, C W ; Seki, S ; Tokura, Y ; Breeze, J D ; Kurebayashi, H</creator><creatorcontrib>Khan, S ; Lee, O ; Dion, T ; Zollitsch, C W ; Seki, S ; Tokura, Y ; Breeze, J D ; Kurebayashi, H</creatorcontrib><description>Topologically protected nanoscale spin textures, known as magnetic skyrmions, possess particlelike properties and feature emergent magnetism effects. In bulk cubic helimagnets, distinct skyrmion resonant modes are already identified using a technique such as ferromagnetic resonance in spintronics. However, direct light-matter coupling between microwave photons and skyrmion resonance modes still needs to be demonstrated. Utilizing two distinct cavity systems, we observe a direct interaction between the cavity resonant mode and two resonant skyrmion modes, the counterclockwise gyration and breathing modes, in bulk Cu2OSeO3. For both resonant modes, we find the largest coupling strength at 57 K indicated by an enhancement of the cavity linewidth at the degeneracy point. We study the effective coupling strength as a function of temperature within the expected skyrmion phase. We attribute the maximum in effective coupling strength to the presence of a large number of skyrmions, and correspondingly to a completely stable skyrmion lattice. Our experimental findings indicate that the coupling between photons and resonant modes of magnetic skyrmions depends on the relative density of these topological particles instead of the pure spin number in the system.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.104.L100402</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Coupling ; Ferromagnetic resonance ; Ferromagnetism ; Hypothetical particles ; Lattice vibration ; Magnetic properties ; Particle spin ; Particle theory ; Photons ; Spintronics ; Topology</subject><ispartof>Physical review. B, 2021-09, Vol.104 (10), p.1</ispartof><rights>Copyright American Physical Society Sep 1, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Khan, S</creatorcontrib><creatorcontrib>Lee, O</creatorcontrib><creatorcontrib>Dion, T</creatorcontrib><creatorcontrib>Zollitsch, C W</creatorcontrib><creatorcontrib>Seki, S</creatorcontrib><creatorcontrib>Tokura, Y</creatorcontrib><creatorcontrib>Breeze, J D</creatorcontrib><creatorcontrib>Kurebayashi, H</creatorcontrib><title>Coupling microwave photons to topological spin textures in Cu2OSeO3</title><title>Physical review. B</title><description>Topologically protected nanoscale spin textures, known as magnetic skyrmions, possess particlelike properties and feature emergent magnetism effects. In bulk cubic helimagnets, distinct skyrmion resonant modes are already identified using a technique such as ferromagnetic resonance in spintronics. However, direct light-matter coupling between microwave photons and skyrmion resonance modes still needs to be demonstrated. Utilizing two distinct cavity systems, we observe a direct interaction between the cavity resonant mode and two resonant skyrmion modes, the counterclockwise gyration and breathing modes, in bulk Cu2OSeO3. For both resonant modes, we find the largest coupling strength at 57 K indicated by an enhancement of the cavity linewidth at the degeneracy point. We study the effective coupling strength as a function of temperature within the expected skyrmion phase. We attribute the maximum in effective coupling strength to the presence of a large number of skyrmions, and correspondingly to a completely stable skyrmion lattice. Our experimental findings indicate that the coupling between photons and resonant modes of magnetic skyrmions depends on the relative density of these topological particles instead of the pure spin number in the system.</description><subject>Coupling</subject><subject>Ferromagnetic resonance</subject><subject>Ferromagnetism</subject><subject>Hypothetical particles</subject><subject>Lattice vibration</subject><subject>Magnetic properties</subject><subject>Particle spin</subject><subject>Particle theory</subject><subject>Photons</subject><subject>Spintronics</subject><subject>Topology</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9jV1LwzAYhYMoOOb-gRcBrzvf5G2b5lKLOqFQ8eN65KtbR21i00799xYU4cB5Lh7OIeSSwZoxwOun_Xd8dsfbNYN0XTGAFPgJWfA0l4mUuTz95wzOySrGAwCwHKQAuSBl6afQtf2Ovrdm8J_q6GjY-9H3kY5-TvCd37VGdTSGtqej-xqnwUU6cznx-sXVeEHOGtVFt_rrJXm7v3stN0lVPzyWN1USWIFjkmkrpAYFDaK0GiRqlxa5Vhw4KgPOGrQA0hirm6Kx2GQaEFHwRgvBJC7J1e9uGPzH5OK4Pfhp6OfLLc8KnqIoZv0HVzlP1w</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Khan, S</creator><creator>Lee, O</creator><creator>Dion, T</creator><creator>Zollitsch, C W</creator><creator>Seki, S</creator><creator>Tokura, Y</creator><creator>Breeze, J D</creator><creator>Kurebayashi, H</creator><general>American Physical Society</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20210901</creationdate><title>Coupling microwave photons to topological spin textures in Cu2OSeO3</title><author>Khan, S ; Lee, O ; Dion, T ; Zollitsch, C W ; Seki, S ; Tokura, Y ; Breeze, J D ; Kurebayashi, H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p183t-5bd79b0a0f339db093be486ba2023ac0edc3d009ccdbf8fd3f5b033372fb77193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Coupling</topic><topic>Ferromagnetic resonance</topic><topic>Ferromagnetism</topic><topic>Hypothetical particles</topic><topic>Lattice vibration</topic><topic>Magnetic properties</topic><topic>Particle spin</topic><topic>Particle theory</topic><topic>Photons</topic><topic>Spintronics</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khan, S</creatorcontrib><creatorcontrib>Lee, O</creatorcontrib><creatorcontrib>Dion, T</creatorcontrib><creatorcontrib>Zollitsch, C W</creatorcontrib><creatorcontrib>Seki, S</creatorcontrib><creatorcontrib>Tokura, Y</creatorcontrib><creatorcontrib>Breeze, J D</creatorcontrib><creatorcontrib>Kurebayashi, H</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khan, S</au><au>Lee, O</au><au>Dion, T</au><au>Zollitsch, C W</au><au>Seki, S</au><au>Tokura, Y</au><au>Breeze, J D</au><au>Kurebayashi, H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coupling microwave photons to topological spin textures in Cu2OSeO3</atitle><jtitle>Physical review. B</jtitle><date>2021-09-01</date><risdate>2021</risdate><volume>104</volume><issue>10</issue><spage>1</spage><pages>1-</pages><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>Topologically protected nanoscale spin textures, known as magnetic skyrmions, possess particlelike properties and feature emergent magnetism effects. In bulk cubic helimagnets, distinct skyrmion resonant modes are already identified using a technique such as ferromagnetic resonance in spintronics. However, direct light-matter coupling between microwave photons and skyrmion resonance modes still needs to be demonstrated. Utilizing two distinct cavity systems, we observe a direct interaction between the cavity resonant mode and two resonant skyrmion modes, the counterclockwise gyration and breathing modes, in bulk Cu2OSeO3. For both resonant modes, we find the largest coupling strength at 57 K indicated by an enhancement of the cavity linewidth at the degeneracy point. We study the effective coupling strength as a function of temperature within the expected skyrmion phase. We attribute the maximum in effective coupling strength to the presence of a large number of skyrmions, and correspondingly to a completely stable skyrmion lattice. Our experimental findings indicate that the coupling between photons and resonant modes of magnetic skyrmions depends on the relative density of these topological particles instead of the pure spin number in the system.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevB.104.L100402</doi></addata></record>
fulltext fulltext
identifier ISSN: 2469-9950
ispartof Physical review. B, 2021-09, Vol.104 (10), p.1
issn 2469-9950
2469-9969
language eng
recordid cdi_proquest_journals_2582437833
source American Physical Society Journals
subjects Coupling
Ferromagnetic resonance
Ferromagnetism
Hypothetical particles
Lattice vibration
Magnetic properties
Particle spin
Particle theory
Photons
Spintronics
Topology
title Coupling microwave photons to topological spin textures in Cu2OSeO3
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T16%3A36%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coupling%20microwave%20photons%20to%20topological%20spin%20textures%20in%20Cu2OSeO3&rft.jtitle=Physical%20review.%20B&rft.au=Khan,%20S&rft.date=2021-09-01&rft.volume=104&rft.issue=10&rft.spage=1&rft.pages=1-&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.104.L100402&rft_dat=%3Cproquest%3E2582437833%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2582437833&rft_id=info:pmid/&rfr_iscdi=true