Impact of ocean model resolution on understanding the delayed warming of the Southern Ocean

Currently available historical climate change simulations indicate a relatively delayed Southern Ocean warming, particularly poleward of the Antarctic Circumpolar Current (ACC) compared much of the rest of the globe. However, even this simulated delayed warming is inconsistent with observational est...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental research letters 2020-11, Vol.15 (11), p.114012, Article 114012
Hauptverfasser: Bilgen, Simge I, Kirtman, Ben P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Currently available historical climate change simulations indicate a relatively delayed Southern Ocean warming, particularly poleward of the Antarctic Circumpolar Current (ACC) compared much of the rest of the globe. However, even this simulated delayed warming is inconsistent with observational estimates which show a cooling trend poleward of the ACC for the period 1979-2014. A fully coupled model run at two resolutions, i.e. ocean eddy parameterized and ocean eddy resolving, driven by historical and fixed CO2 concentration is used to investigate forced trends south of the ACC. We analyze the 1961-2005 Southern Ocean surface and upper ocean temperatures trends simulated by the model and observational estimates to understand the observed trends in the SO. At both resolutions, the models successfully reproduce the observed warming response for the northern flank of the ACC. The eddy resolving simulations, however, are able to reproduce the observed near Antarctic cooling in contrast to the eddy parameterized simulation which shows a warming trend. The cause of this inconsistency between the observations and the ocean eddy parameterized climate models is still a matter of debate, and we show here results that suggest resolved ocean meso-scale processes may be an integral part of capturing the observed trends in the Southern Ocean.
ISSN:1748-9326
1748-9326
DOI:10.1088/1748-9326/abbc3e