The Gelfand-Tsetlin basis for infinite-dimensional representations of \(gl_n(\mathbb{C})\)

We consider the problem of determination of the Gelfand-Tsetlin basis for unitary principal series representations of the Lie algebra \(gl_n(\mathbb{C})\). The Gelfand-Tsetlin basis for an infinite-dimensional representation can be defined as the basis of common eigenfunctions of corner quantum mino...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-04
1. Verfasser: Antonenko, P V
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Antonenko, P V
description We consider the problem of determination of the Gelfand-Tsetlin basis for unitary principal series representations of the Lie algebra \(gl_n(\mathbb{C})\). The Gelfand-Tsetlin basis for an infinite-dimensional representation can be defined as the basis of common eigenfunctions of corner quantum minors of the corresponding L-operator. The construction is based on the induction with respect to the rank of the algebra: an element of the basis for \(gl_n(\mathbb{C})\) is expressed in terms of a Mellin-Barnes type integral of an element of the basis for \(gl_{n-1}(\mathbb{C})\). The integration variables are the parameters (in other words, the quantum numbers) setting the eigenfunction. Explicit results are obtained for ranks \(3\) and \(4\), and the orthogonality of constructed sets of basis elements is demonstrated. For \(gl_3(\mathbb{C})\) the kernel of the integral is expressed in terms of gamma-functions of the parameters of eigenfunctions, and in the case of \(gl_4(\mathbb{C})\) -- in terms of a hypergeometric function of the complex field at unity. The formulas presented for an arbitrary rank make it possible to obtain the system of finite-difference equations for the kernel. They include expressions for the quantum minors of \(gl_n(\mathbb{C})\) L-operator via the minors of \(gl_{n-1}(\mathbb{C})\) L-operator for the principal series representations, as well as formulas for action of some non-corner minors on the eigenfunctions of corner ones. The latter hold for any representation of \(gl_n(\mathbb{C})\) (not only principal series) in which the corner minors of the L-operator can be diagonalized.
doi_str_mv 10.48550/arxiv.2110.07023
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2582282593</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2582282593</sourcerecordid><originalsourceid>FETCH-proquest_journals_25822825933</originalsourceid><addsrcrecordid>eNqNjNFqwjAUQMNAmGg_YG-BvdSHuvTGrPVZ3PyAPo1CSenNjMREc6MI4r-vD_sAnw4cDoext1IsV7VS4kPHm70uoRyFqATIFzYFKcuiXgG8sozoIISAzwqUklP20-yRf6Mz2g9FQ5ic9bzXZImbELn1xnqbsBjsET3Z4LXjEU8RCX3SaRTEg-Ft_us6n7dHnfZ9f988Fu1iziZGO8LsnzP2_rVtNrviFMP5gpS6Q7jEcUgdqBqgBrWW8rnqD51ISMk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2582282593</pqid></control><display><type>article</type><title>The Gelfand-Tsetlin basis for infinite-dimensional representations of \(gl_n(\mathbb{C})\)</title><source>Free E- Journals</source><creator>Antonenko, P V</creator><creatorcontrib>Antonenko, P V</creatorcontrib><description>We consider the problem of determination of the Gelfand-Tsetlin basis for unitary principal series representations of the Lie algebra \(gl_n(\mathbb{C})\). The Gelfand-Tsetlin basis for an infinite-dimensional representation can be defined as the basis of common eigenfunctions of corner quantum minors of the corresponding L-operator. The construction is based on the induction with respect to the rank of the algebra: an element of the basis for \(gl_n(\mathbb{C})\) is expressed in terms of a Mellin-Barnes type integral of an element of the basis for \(gl_{n-1}(\mathbb{C})\). The integration variables are the parameters (in other words, the quantum numbers) setting the eigenfunction. Explicit results are obtained for ranks \(3\) and \(4\), and the orthogonality of constructed sets of basis elements is demonstrated. For \(gl_3(\mathbb{C})\) the kernel of the integral is expressed in terms of gamma-functions of the parameters of eigenfunctions, and in the case of \(gl_4(\mathbb{C})\) -- in terms of a hypergeometric function of the complex field at unity. The formulas presented for an arbitrary rank make it possible to obtain the system of finite-difference equations for the kernel. They include expressions for the quantum minors of \(gl_n(\mathbb{C})\) L-operator via the minors of \(gl_{n-1}(\mathbb{C})\) L-operator for the principal series representations, as well as formulas for action of some non-corner minors on the eigenfunctions of corner ones. The latter hold for any representation of \(gl_n(\mathbb{C})\) (not only principal series) in which the corner minors of the L-operator can be diagonalized.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2110.07023</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Difference equations ; Eigenvectors ; Finite difference method ; Hypergeometric functions ; Kernels ; Lie groups ; Mathematical analysis ; Operators (mathematics) ; Orthogonality ; Parameters ; Quantum numbers ; Representations</subject><ispartof>arXiv.org, 2022-04</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>777,781,27906</link.rule.ids></links><search><creatorcontrib>Antonenko, P V</creatorcontrib><title>The Gelfand-Tsetlin basis for infinite-dimensional representations of \(gl_n(\mathbb{C})\)</title><title>arXiv.org</title><description>We consider the problem of determination of the Gelfand-Tsetlin basis for unitary principal series representations of the Lie algebra \(gl_n(\mathbb{C})\). The Gelfand-Tsetlin basis for an infinite-dimensional representation can be defined as the basis of common eigenfunctions of corner quantum minors of the corresponding L-operator. The construction is based on the induction with respect to the rank of the algebra: an element of the basis for \(gl_n(\mathbb{C})\) is expressed in terms of a Mellin-Barnes type integral of an element of the basis for \(gl_{n-1}(\mathbb{C})\). The integration variables are the parameters (in other words, the quantum numbers) setting the eigenfunction. Explicit results are obtained for ranks \(3\) and \(4\), and the orthogonality of constructed sets of basis elements is demonstrated. For \(gl_3(\mathbb{C})\) the kernel of the integral is expressed in terms of gamma-functions of the parameters of eigenfunctions, and in the case of \(gl_4(\mathbb{C})\) -- in terms of a hypergeometric function of the complex field at unity. The formulas presented for an arbitrary rank make it possible to obtain the system of finite-difference equations for the kernel. They include expressions for the quantum minors of \(gl_n(\mathbb{C})\) L-operator via the minors of \(gl_{n-1}(\mathbb{C})\) L-operator for the principal series representations, as well as formulas for action of some non-corner minors on the eigenfunctions of corner ones. The latter hold for any representation of \(gl_n(\mathbb{C})\) (not only principal series) in which the corner minors of the L-operator can be diagonalized.</description><subject>Difference equations</subject><subject>Eigenvectors</subject><subject>Finite difference method</subject><subject>Hypergeometric functions</subject><subject>Kernels</subject><subject>Lie groups</subject><subject>Mathematical analysis</subject><subject>Operators (mathematics)</subject><subject>Orthogonality</subject><subject>Parameters</subject><subject>Quantum numbers</subject><subject>Representations</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjNFqwjAUQMNAmGg_YG-BvdSHuvTGrPVZ3PyAPo1CSenNjMREc6MI4r-vD_sAnw4cDoext1IsV7VS4kPHm70uoRyFqATIFzYFKcuiXgG8sozoIISAzwqUklP20-yRf6Mz2g9FQ5ic9bzXZImbELn1xnqbsBjsET3Z4LXjEU8RCX3SaRTEg-Ft_us6n7dHnfZ9f988Fu1iziZGO8LsnzP2_rVtNrviFMP5gpS6Q7jEcUgdqBqgBrWW8rnqD51ISMk</recordid><startdate>20220406</startdate><enddate>20220406</enddate><creator>Antonenko, P V</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220406</creationdate><title>The Gelfand-Tsetlin basis for infinite-dimensional representations of \(gl_n(\mathbb{C})\)</title><author>Antonenko, P V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25822825933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Difference equations</topic><topic>Eigenvectors</topic><topic>Finite difference method</topic><topic>Hypergeometric functions</topic><topic>Kernels</topic><topic>Lie groups</topic><topic>Mathematical analysis</topic><topic>Operators (mathematics)</topic><topic>Orthogonality</topic><topic>Parameters</topic><topic>Quantum numbers</topic><topic>Representations</topic><toplevel>online_resources</toplevel><creatorcontrib>Antonenko, P V</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Antonenko, P V</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>The Gelfand-Tsetlin basis for infinite-dimensional representations of \(gl_n(\mathbb{C})\)</atitle><jtitle>arXiv.org</jtitle><date>2022-04-06</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>We consider the problem of determination of the Gelfand-Tsetlin basis for unitary principal series representations of the Lie algebra \(gl_n(\mathbb{C})\). The Gelfand-Tsetlin basis for an infinite-dimensional representation can be defined as the basis of common eigenfunctions of corner quantum minors of the corresponding L-operator. The construction is based on the induction with respect to the rank of the algebra: an element of the basis for \(gl_n(\mathbb{C})\) is expressed in terms of a Mellin-Barnes type integral of an element of the basis for \(gl_{n-1}(\mathbb{C})\). The integration variables are the parameters (in other words, the quantum numbers) setting the eigenfunction. Explicit results are obtained for ranks \(3\) and \(4\), and the orthogonality of constructed sets of basis elements is demonstrated. For \(gl_3(\mathbb{C})\) the kernel of the integral is expressed in terms of gamma-functions of the parameters of eigenfunctions, and in the case of \(gl_4(\mathbb{C})\) -- in terms of a hypergeometric function of the complex field at unity. The formulas presented for an arbitrary rank make it possible to obtain the system of finite-difference equations for the kernel. They include expressions for the quantum minors of \(gl_n(\mathbb{C})\) L-operator via the minors of \(gl_{n-1}(\mathbb{C})\) L-operator for the principal series representations, as well as formulas for action of some non-corner minors on the eigenfunctions of corner ones. The latter hold for any representation of \(gl_n(\mathbb{C})\) (not only principal series) in which the corner minors of the L-operator can be diagonalized.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2110.07023</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-04
issn 2331-8422
language eng
recordid cdi_proquest_journals_2582282593
source Free E- Journals
subjects Difference equations
Eigenvectors
Finite difference method
Hypergeometric functions
Kernels
Lie groups
Mathematical analysis
Operators (mathematics)
Orthogonality
Parameters
Quantum numbers
Representations
title The Gelfand-Tsetlin basis for infinite-dimensional representations of \(gl_n(\mathbb{C})\)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T18%3A10%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=The%20Gelfand-Tsetlin%20basis%20for%20infinite-dimensional%20representations%20of%20%5C(gl_n(%5Cmathbb%7BC%7D)%5C)&rft.jtitle=arXiv.org&rft.au=Antonenko,%20P%20V&rft.date=2022-04-06&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2110.07023&rft_dat=%3Cproquest%3E2582282593%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2582282593&rft_id=info:pmid/&rfr_iscdi=true