Older orogens cooled slower: new constraints on Orosirian tectonics from garnet diffusion modeling of metamorphic timescales, Jiaobei terrain, North China Craton

Metamorphic timescales harbor crucial information for quantifying lithospheric processes and identifying tectonic regimes. The Orosirian Period is known for global orogenesis during 2.1‒1.8 Ga that possibly signifies the emergence of global-scale plate tectonics. While the metamorphic pressure–tempe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Contributions to mineralogy and petrology 2021-11, Vol.176 (11), Article 91
Hauptverfasser: Zou, Yi, Li, Qiuli, Chu, Xu, Zhai, Mingguo, Mitchell, Ross N., Zhao, Lei, Zhou, Ligang, Wang, Yuquan, Liu, Bo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page
container_title Contributions to mineralogy and petrology
container_volume 176
creator Zou, Yi
Li, Qiuli
Chu, Xu
Zhai, Mingguo
Mitchell, Ross N.
Zhao, Lei
Zhou, Ligang
Wang, Yuquan
Liu, Bo
description Metamorphic timescales harbor crucial information for quantifying lithospheric processes and identifying tectonic regimes. The Orosirian Period is known for global orogenesis during 2.1‒1.8 Ga that possibly signifies the emergence of global-scale plate tectonics. While the metamorphic pressure–temperature ( P–T ) paths and T/P ratios have been extensively used to characterize 2.1–1.8 Ga orogens, their detailed metamorphic timescales remain underutilized. In this study, we use garnet diffusion modeling to explicitly explore the metamorphic timescales of dominant pelitic granulites in the Jiaobei terrane, the southwest part of the Jiao-Liao-Ji orogenic belt (JLJB), North China Craton. The pelitic granulites record high-pressure granulite-facies metamorphism of 13–14 kbar and 860–870 °C, followed by fast decompression (4‒21 mm yr −1 ) with some degree of heating to medium-pressure granulite-facies retrogression of 7‒8 kbar and 865‒950 °C at c. 1.85 Ga. The subsequent cooling is nearly isobaric, but likely nonlinear with initially faster and later slower cooling (17‒32 °C Myr −1 , 950/865–700 °C; 5–7 °C Myr −1 , 700–600 °C, respectively). The determined clockwise P–T–t path provides evidence for convergent plate boundary processes and the fast exhumation is likely related to an extensional setting. The relatively fast exhumation and cooling rates at high temperatures, as obtained via diffusion chronometry, represent the fastest rates yet reported from 2.1 to 1.8 Ga orogens and are several times to one order of magnitude slower than those observed in modern orogens. In the light of recent numerical modeling, we suggest that these slower metamorphic rates of the c. 2.1‒1.8 Ga JLJB orogenic rocks are consistent with the features of orogenesis occurring at higher mantle temperatures, such as hotter orogenic thermal structures, less over-thickened orogenic crusts, and distributed strain patterns. Therefore, the timescale information from the JLJB indicates that Paleoproterozoic plate tectonics under higher temperatures might have caused subduction and collisional orogenesis to be distinct from their modern style. Notably, the detailed ancient metamorphic timescales achieved by diffusion modeling cannot be resolved geochronologically, highlighting the necessity of applying diffusion chronometry to quantify ancient tectonic processes.
doi_str_mv 10.1007/s00410-021-01846-w
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2582274529</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A679120948</galeid><sourcerecordid>A679120948</sourcerecordid><originalsourceid>FETCH-LOGICAL-a447t-be8790d6c440cb4a4554c93f4dd9146dc9b8511c77501669e27579c11675fdb23</originalsourceid><addsrcrecordid>eNp9ksGKFDEQhhtRcFz3BTwFvG6vSSbd6XhbBl2Vxbm455BOKj1ZupOxkmHwcXzTzTrCIgySQ0jV91dRlb9p3jF6zSiVHzKlgtGWctZSNoi-Pb5oVkyseUtVL182K0prWiqlXjdvcn6g9T2obtX83s4OkCRME8RMbEozOJLndAT8SCIcayjmgibEkkmKZIspBwwmkgK2pBhsJh7TQiaDEQpxwftDDpVckoM5xIkkTxYoZkm43wVLSlggWzNDviLfgkkjhFoLn1pcke8Jy45sdiEaskFTG7xtXnkzZ7j8e180958__dh8ae-2t183N3etEUKWdoRBKup6KwS1ozCi64RVay-cU0z0zqpx6BizUnaU9b0CLjupLGO97Lwb-fqieX-qu8f08wC56Id0wFhbat4NnEvRcfVMTXUAHaJPdTd2Cdnqm14qxqkSQ6XaM1TdMKCZUwQfavgf_voMX4-DJdizAn4S2PodGcHrPYbF4C_NqH5yhD45QldH6D-O0McqWp9EucJxAnye8D-qR66oum4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2582274529</pqid></control><display><type>article</type><title>Older orogens cooled slower: new constraints on Orosirian tectonics from garnet diffusion modeling of metamorphic timescales, Jiaobei terrain, North China Craton</title><source>SpringerNature Journals</source><creator>Zou, Yi ; Li, Qiuli ; Chu, Xu ; Zhai, Mingguo ; Mitchell, Ross N. ; Zhao, Lei ; Zhou, Ligang ; Wang, Yuquan ; Liu, Bo</creator><creatorcontrib>Zou, Yi ; Li, Qiuli ; Chu, Xu ; Zhai, Mingguo ; Mitchell, Ross N. ; Zhao, Lei ; Zhou, Ligang ; Wang, Yuquan ; Liu, Bo</creatorcontrib><description>Metamorphic timescales harbor crucial information for quantifying lithospheric processes and identifying tectonic regimes. The Orosirian Period is known for global orogenesis during 2.1‒1.8 Ga that possibly signifies the emergence of global-scale plate tectonics. While the metamorphic pressure–temperature ( P–T ) paths and T/P ratios have been extensively used to characterize 2.1–1.8 Ga orogens, their detailed metamorphic timescales remain underutilized. In this study, we use garnet diffusion modeling to explicitly explore the metamorphic timescales of dominant pelitic granulites in the Jiaobei terrane, the southwest part of the Jiao-Liao-Ji orogenic belt (JLJB), North China Craton. The pelitic granulites record high-pressure granulite-facies metamorphism of 13–14 kbar and 860–870 °C, followed by fast decompression (4‒21 mm yr −1 ) with some degree of heating to medium-pressure granulite-facies retrogression of 7‒8 kbar and 865‒950 °C at c. 1.85 Ga. The subsequent cooling is nearly isobaric, but likely nonlinear with initially faster and later slower cooling (17‒32 °C Myr −1 , 950/865–700 °C; 5–7 °C Myr −1 , 700–600 °C, respectively). The determined clockwise P–T–t path provides evidence for convergent plate boundary processes and the fast exhumation is likely related to an extensional setting. The relatively fast exhumation and cooling rates at high temperatures, as obtained via diffusion chronometry, represent the fastest rates yet reported from 2.1 to 1.8 Ga orogens and are several times to one order of magnitude slower than those observed in modern orogens. In the light of recent numerical modeling, we suggest that these slower metamorphic rates of the c. 2.1‒1.8 Ga JLJB orogenic rocks are consistent with the features of orogenesis occurring at higher mantle temperatures, such as hotter orogenic thermal structures, less over-thickened orogenic crusts, and distributed strain patterns. Therefore, the timescale information from the JLJB indicates that Paleoproterozoic plate tectonics under higher temperatures might have caused subduction and collisional orogenesis to be distinct from their modern style. Notably, the detailed ancient metamorphic timescales achieved by diffusion modeling cannot be resolved geochronologically, highlighting the necessity of applying diffusion chronometry to quantify ancient tectonic processes.</description><identifier>ISSN: 0010-7999</identifier><identifier>EISSN: 1432-0967</identifier><identifier>DOI: 10.1007/s00410-021-01846-w</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analysis ; Boundary processes ; Concretions ; Cooling ; Cooling rate ; Cratons ; Crusts ; Decompression ; Diffusion ; Diffusion rate ; Earth and Environmental Science ; Earth Sciences ; Garnet ; Geochronology ; Geology ; High temperature ; Isotopes ; Measuring instruments ; Metamorphism ; Metamorphism (Geology) ; Mineral Resources ; Mineralogy ; Modelling ; Original Paper ; Orogeny ; Petrology ; Plate boundaries ; Plate tectonics ; Plates (tectonics) ; Pressure ; Rocks, Metamorphic ; Subduction ; Subduction (geology) ; Tectonics ; Tectonics (Geology)</subject><ispartof>Contributions to mineralogy and petrology, 2021-11, Vol.176 (11), Article 91</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a447t-be8790d6c440cb4a4554c93f4dd9146dc9b8511c77501669e27579c11675fdb23</citedby><cites>FETCH-LOGICAL-a447t-be8790d6c440cb4a4554c93f4dd9146dc9b8511c77501669e27579c11675fdb23</cites><orcidid>0000-0002-8277-7846</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00410-021-01846-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00410-021-01846-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Zou, Yi</creatorcontrib><creatorcontrib>Li, Qiuli</creatorcontrib><creatorcontrib>Chu, Xu</creatorcontrib><creatorcontrib>Zhai, Mingguo</creatorcontrib><creatorcontrib>Mitchell, Ross N.</creatorcontrib><creatorcontrib>Zhao, Lei</creatorcontrib><creatorcontrib>Zhou, Ligang</creatorcontrib><creatorcontrib>Wang, Yuquan</creatorcontrib><creatorcontrib>Liu, Bo</creatorcontrib><title>Older orogens cooled slower: new constraints on Orosirian tectonics from garnet diffusion modeling of metamorphic timescales, Jiaobei terrain, North China Craton</title><title>Contributions to mineralogy and petrology</title><addtitle>Contrib Mineral Petrol</addtitle><description>Metamorphic timescales harbor crucial information for quantifying lithospheric processes and identifying tectonic regimes. The Orosirian Period is known for global orogenesis during 2.1‒1.8 Ga that possibly signifies the emergence of global-scale plate tectonics. While the metamorphic pressure–temperature ( P–T ) paths and T/P ratios have been extensively used to characterize 2.1–1.8 Ga orogens, their detailed metamorphic timescales remain underutilized. In this study, we use garnet diffusion modeling to explicitly explore the metamorphic timescales of dominant pelitic granulites in the Jiaobei terrane, the southwest part of the Jiao-Liao-Ji orogenic belt (JLJB), North China Craton. The pelitic granulites record high-pressure granulite-facies metamorphism of 13–14 kbar and 860–870 °C, followed by fast decompression (4‒21 mm yr −1 ) with some degree of heating to medium-pressure granulite-facies retrogression of 7‒8 kbar and 865‒950 °C at c. 1.85 Ga. The subsequent cooling is nearly isobaric, but likely nonlinear with initially faster and later slower cooling (17‒32 °C Myr −1 , 950/865–700 °C; 5–7 °C Myr −1 , 700–600 °C, respectively). The determined clockwise P–T–t path provides evidence for convergent plate boundary processes and the fast exhumation is likely related to an extensional setting. The relatively fast exhumation and cooling rates at high temperatures, as obtained via diffusion chronometry, represent the fastest rates yet reported from 2.1 to 1.8 Ga orogens and are several times to one order of magnitude slower than those observed in modern orogens. In the light of recent numerical modeling, we suggest that these slower metamorphic rates of the c. 2.1‒1.8 Ga JLJB orogenic rocks are consistent with the features of orogenesis occurring at higher mantle temperatures, such as hotter orogenic thermal structures, less over-thickened orogenic crusts, and distributed strain patterns. Therefore, the timescale information from the JLJB indicates that Paleoproterozoic plate tectonics under higher temperatures might have caused subduction and collisional orogenesis to be distinct from their modern style. Notably, the detailed ancient metamorphic timescales achieved by diffusion modeling cannot be resolved geochronologically, highlighting the necessity of applying diffusion chronometry to quantify ancient tectonic processes.</description><subject>Analysis</subject><subject>Boundary processes</subject><subject>Concretions</subject><subject>Cooling</subject><subject>Cooling rate</subject><subject>Cratons</subject><subject>Crusts</subject><subject>Decompression</subject><subject>Diffusion</subject><subject>Diffusion rate</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Garnet</subject><subject>Geochronology</subject><subject>Geology</subject><subject>High temperature</subject><subject>Isotopes</subject><subject>Measuring instruments</subject><subject>Metamorphism</subject><subject>Metamorphism (Geology)</subject><subject>Mineral Resources</subject><subject>Mineralogy</subject><subject>Modelling</subject><subject>Original Paper</subject><subject>Orogeny</subject><subject>Petrology</subject><subject>Plate boundaries</subject><subject>Plate tectonics</subject><subject>Plates (tectonics)</subject><subject>Pressure</subject><subject>Rocks, Metamorphic</subject><subject>Subduction</subject><subject>Subduction (geology)</subject><subject>Tectonics</subject><subject>Tectonics (Geology)</subject><issn>0010-7999</issn><issn>1432-0967</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9ksGKFDEQhhtRcFz3BTwFvG6vSSbd6XhbBl2Vxbm455BOKj1ZupOxkmHwcXzTzTrCIgySQ0jV91dRlb9p3jF6zSiVHzKlgtGWctZSNoi-Pb5oVkyseUtVL182K0prWiqlXjdvcn6g9T2obtX83s4OkCRME8RMbEozOJLndAT8SCIcayjmgibEkkmKZIspBwwmkgK2pBhsJh7TQiaDEQpxwftDDpVckoM5xIkkTxYoZkm43wVLSlggWzNDviLfgkkjhFoLn1pcke8Jy45sdiEaskFTG7xtXnkzZ7j8e180958__dh8ae-2t183N3etEUKWdoRBKup6KwS1ozCi64RVay-cU0z0zqpx6BizUnaU9b0CLjupLGO97Lwb-fqieX-qu8f08wC56Id0wFhbat4NnEvRcfVMTXUAHaJPdTd2Cdnqm14qxqkSQ6XaM1TdMKCZUwQfavgf_voMX4-DJdizAn4S2PodGcHrPYbF4C_NqH5yhD45QldH6D-O0McqWp9EucJxAnye8D-qR66oum4</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Zou, Yi</creator><creator>Li, Qiuli</creator><creator>Chu, Xu</creator><creator>Zhai, Mingguo</creator><creator>Mitchell, Ross N.</creator><creator>Zhao, Lei</creator><creator>Zhou, Ligang</creator><creator>Wang, Yuquan</creator><creator>Liu, Bo</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TN</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L.G</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>R05</scope><orcidid>https://orcid.org/0000-0002-8277-7846</orcidid></search><sort><creationdate>20211101</creationdate><title>Older orogens cooled slower: new constraints on Orosirian tectonics from garnet diffusion modeling of metamorphic timescales, Jiaobei terrain, North China Craton</title><author>Zou, Yi ; Li, Qiuli ; Chu, Xu ; Zhai, Mingguo ; Mitchell, Ross N. ; Zhao, Lei ; Zhou, Ligang ; Wang, Yuquan ; Liu, Bo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a447t-be8790d6c440cb4a4554c93f4dd9146dc9b8511c77501669e27579c11675fdb23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Analysis</topic><topic>Boundary processes</topic><topic>Concretions</topic><topic>Cooling</topic><topic>Cooling rate</topic><topic>Cratons</topic><topic>Crusts</topic><topic>Decompression</topic><topic>Diffusion</topic><topic>Diffusion rate</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Garnet</topic><topic>Geochronology</topic><topic>Geology</topic><topic>High temperature</topic><topic>Isotopes</topic><topic>Measuring instruments</topic><topic>Metamorphism</topic><topic>Metamorphism (Geology)</topic><topic>Mineral Resources</topic><topic>Mineralogy</topic><topic>Modelling</topic><topic>Original Paper</topic><topic>Orogeny</topic><topic>Petrology</topic><topic>Plate boundaries</topic><topic>Plate tectonics</topic><topic>Plates (tectonics)</topic><topic>Pressure</topic><topic>Rocks, Metamorphic</topic><topic>Subduction</topic><topic>Subduction (geology)</topic><topic>Tectonics</topic><topic>Tectonics (Geology)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zou, Yi</creatorcontrib><creatorcontrib>Li, Qiuli</creatorcontrib><creatorcontrib>Chu, Xu</creatorcontrib><creatorcontrib>Zhai, Mingguo</creatorcontrib><creatorcontrib>Mitchell, Ross N.</creatorcontrib><creatorcontrib>Zhao, Lei</creatorcontrib><creatorcontrib>Zhou, Ligang</creatorcontrib><creatorcontrib>Wang, Yuquan</creatorcontrib><creatorcontrib>Liu, Bo</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Oceanic Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><jtitle>Contributions to mineralogy and petrology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zou, Yi</au><au>Li, Qiuli</au><au>Chu, Xu</au><au>Zhai, Mingguo</au><au>Mitchell, Ross N.</au><au>Zhao, Lei</au><au>Zhou, Ligang</au><au>Wang, Yuquan</au><au>Liu, Bo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Older orogens cooled slower: new constraints on Orosirian tectonics from garnet diffusion modeling of metamorphic timescales, Jiaobei terrain, North China Craton</atitle><jtitle>Contributions to mineralogy and petrology</jtitle><stitle>Contrib Mineral Petrol</stitle><date>2021-11-01</date><risdate>2021</risdate><volume>176</volume><issue>11</issue><artnum>91</artnum><issn>0010-7999</issn><eissn>1432-0967</eissn><abstract>Metamorphic timescales harbor crucial information for quantifying lithospheric processes and identifying tectonic regimes. The Orosirian Period is known for global orogenesis during 2.1‒1.8 Ga that possibly signifies the emergence of global-scale plate tectonics. While the metamorphic pressure–temperature ( P–T ) paths and T/P ratios have been extensively used to characterize 2.1–1.8 Ga orogens, their detailed metamorphic timescales remain underutilized. In this study, we use garnet diffusion modeling to explicitly explore the metamorphic timescales of dominant pelitic granulites in the Jiaobei terrane, the southwest part of the Jiao-Liao-Ji orogenic belt (JLJB), North China Craton. The pelitic granulites record high-pressure granulite-facies metamorphism of 13–14 kbar and 860–870 °C, followed by fast decompression (4‒21 mm yr −1 ) with some degree of heating to medium-pressure granulite-facies retrogression of 7‒8 kbar and 865‒950 °C at c. 1.85 Ga. The subsequent cooling is nearly isobaric, but likely nonlinear with initially faster and later slower cooling (17‒32 °C Myr −1 , 950/865–700 °C; 5–7 °C Myr −1 , 700–600 °C, respectively). The determined clockwise P–T–t path provides evidence for convergent plate boundary processes and the fast exhumation is likely related to an extensional setting. The relatively fast exhumation and cooling rates at high temperatures, as obtained via diffusion chronometry, represent the fastest rates yet reported from 2.1 to 1.8 Ga orogens and are several times to one order of magnitude slower than those observed in modern orogens. In the light of recent numerical modeling, we suggest that these slower metamorphic rates of the c. 2.1‒1.8 Ga JLJB orogenic rocks are consistent with the features of orogenesis occurring at higher mantle temperatures, such as hotter orogenic thermal structures, less over-thickened orogenic crusts, and distributed strain patterns. Therefore, the timescale information from the JLJB indicates that Paleoproterozoic plate tectonics under higher temperatures might have caused subduction and collisional orogenesis to be distinct from their modern style. Notably, the detailed ancient metamorphic timescales achieved by diffusion modeling cannot be resolved geochronologically, highlighting the necessity of applying diffusion chronometry to quantify ancient tectonic processes.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00410-021-01846-w</doi><orcidid>https://orcid.org/0000-0002-8277-7846</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0010-7999
ispartof Contributions to mineralogy and petrology, 2021-11, Vol.176 (11), Article 91
issn 0010-7999
1432-0967
language eng
recordid cdi_proquest_journals_2582274529
source SpringerNature Journals
subjects Analysis
Boundary processes
Concretions
Cooling
Cooling rate
Cratons
Crusts
Decompression
Diffusion
Diffusion rate
Earth and Environmental Science
Earth Sciences
Garnet
Geochronology
Geology
High temperature
Isotopes
Measuring instruments
Metamorphism
Metamorphism (Geology)
Mineral Resources
Mineralogy
Modelling
Original Paper
Orogeny
Petrology
Plate boundaries
Plate tectonics
Plates (tectonics)
Pressure
Rocks, Metamorphic
Subduction
Subduction (geology)
Tectonics
Tectonics (Geology)
title Older orogens cooled slower: new constraints on Orosirian tectonics from garnet diffusion modeling of metamorphic timescales, Jiaobei terrain, North China Craton
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T19%3A55%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Older%20orogens%20cooled%20slower:%20new%20constraints%20on%20Orosirian%20tectonics%20from%20garnet%20diffusion%20modeling%20of%20metamorphic%20timescales,%20Jiaobei%20terrain,%20North%20China%20Craton&rft.jtitle=Contributions%20to%20mineralogy%20and%20petrology&rft.au=Zou,%20Yi&rft.date=2021-11-01&rft.volume=176&rft.issue=11&rft.artnum=91&rft.issn=0010-7999&rft.eissn=1432-0967&rft_id=info:doi/10.1007/s00410-021-01846-w&rft_dat=%3Cgale_proqu%3EA679120948%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2582274529&rft_id=info:pmid/&rft_galeid=A679120948&rfr_iscdi=true