Semisupervised dynamic soft sensor based on complementary ensemble empirical mode decomposition and deep learning

•CEEMD and Isomap are combined to eliminate noise and redundancy in the data.•A new semisupervised dynamic soft sensor model named SSDGRU-CNN is proposed.•The soft sensor methodology has good dynamic performance and prediction accuracy.•The effectiveness is proven by measuring the rotor deformation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Measurement : journal of the International Measurement Confederation 2021-10, Vol.183, p.109788, Article 109788
Hauptverfasser: Guo, Runyuan, Liu, Han
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 109788
container_title Measurement : journal of the International Measurement Confederation
container_volume 183
creator Guo, Runyuan
Liu, Han
description •CEEMD and Isomap are combined to eliminate noise and redundancy in the data.•A new semisupervised dynamic soft sensor model named SSDGRU-CNN is proposed.•The soft sensor methodology has good dynamic performance and prediction accuracy.•The effectiveness is proven by measuring the rotor deformation of an air preheater. Noise, redundancy, and dynamic characteristics in industrial process data have been regarded as the key factors that affect the measurement accuracy of data-driven soft sensors. In this paper, a semi-supervised dynamic soft sensor is proposed to capture the dynamic characteristics of data while removing noise and redundancy within the data, thus ensuring improved accuracy. Complementary ensemble empirical mode decomposition and isometric feature mapping are combined to reduce noise and redundancy. A semi-supervised deep learning model is designed to capture the dynamic characteristics. Compared with traditional soft sensors, the effectiveness and superiority of this method are verified via an experiment using an air preheater of a power boiler. The proposed method achieves the lowest MAE of 0.1745 and the highest correlation coefficient of 0.9969. Compared to methods without data preprocessing, the MAE of the preprocessed soft sensor decreases by 22.28% on average, while the correlation coefficient increases by 0.24% on average.
doi_str_mv 10.1016/j.measurement.2021.109788
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2582219895</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0263224121007417</els_id><sourcerecordid>2582219895</sourcerecordid><originalsourceid>FETCH-LOGICAL-c279t-8a760402503e713f0d72d6f6d2726d154b13f049eb49a597d9d7f5e3b6b5d8e3</originalsourceid><addsrcrecordid>eNqNULtOwzAUtRBIlMI_GDGn2E5ixyOqeElIDHRgs5z4BrmK7dROK_XvcSgDI9OVzj0PnYPQLSUrSii_364c6LSP4MBPK0YYzbgUTXOGFrQRZVFR9nmOFoTxsmCsopfoKqUtIYSXki_Q7gOcTfsR4sEmMNgcvXa2wyn0E07gU4i41fMneNwFNw4_SToecX6CawfA4EYbbacH7IIBbGDmhWQnmzXaZ1OAEQ-go7f-6xpd9HpIcPN7l2jz9LhZvxRv78-v64e3omNCTkWjBScVYTUpQdCyJ0Yww3tumGDc0LpqZ7CS0FZS11IYaURfQ9nytjYNlEt0d7IdY9jtIU1qG_bR50TF6oYxKhtZZ5Y8sboYUorQqzFal9spStQ8sNqqPwOreWB1Gjhr1yct5BYHC1GlzoLvwNgI3aRMsP9w-QZ6UIzv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2582219895</pqid></control><display><type>article</type><title>Semisupervised dynamic soft sensor based on complementary ensemble empirical mode decomposition and deep learning</title><source>Access via ScienceDirect (Elsevier)</source><creator>Guo, Runyuan ; Liu, Han</creator><creatorcontrib>Guo, Runyuan ; Liu, Han</creatorcontrib><description>•CEEMD and Isomap are combined to eliminate noise and redundancy in the data.•A new semisupervised dynamic soft sensor model named SSDGRU-CNN is proposed.•The soft sensor methodology has good dynamic performance and prediction accuracy.•The effectiveness is proven by measuring the rotor deformation of an air preheater. Noise, redundancy, and dynamic characteristics in industrial process data have been regarded as the key factors that affect the measurement accuracy of data-driven soft sensors. In this paper, a semi-supervised dynamic soft sensor is proposed to capture the dynamic characteristics of data while removing noise and redundancy within the data, thus ensuring improved accuracy. Complementary ensemble empirical mode decomposition and isometric feature mapping are combined to reduce noise and redundancy. A semi-supervised deep learning model is designed to capture the dynamic characteristics. Compared with traditional soft sensors, the effectiveness and superiority of this method are verified via an experiment using an air preheater of a power boiler. The proposed method achieves the lowest MAE of 0.1745 and the highest correlation coefficient of 0.9969. Compared to methods without data preprocessing, the MAE of the preprocessed soft sensor decreases by 22.28% on average, while the correlation coefficient increases by 0.24% on average.</description><identifier>ISSN: 0263-2241</identifier><identifier>EISSN: 1873-412X</identifier><identifier>DOI: 10.1016/j.measurement.2021.109788</identifier><language>eng</language><publisher>London: Elsevier Ltd</publisher><subject>Complementary ensemble empirical mode decomposition ; Correlation coefficients ; Deep learning ; Dynamic characteristics ; Gated recurrent unit ; Heating equipment ; Measurement ; Noise ; Redundancy ; Rotor thermal deformation ; Semisupervised dynamic modeling ; Sensors ; Soft sensor</subject><ispartof>Measurement : journal of the International Measurement Confederation, 2021-10, Vol.183, p.109788, Article 109788</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright Elsevier Science Ltd. Oct 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c279t-8a760402503e713f0d72d6f6d2726d154b13f049eb49a597d9d7f5e3b6b5d8e3</citedby><cites>FETCH-LOGICAL-c279t-8a760402503e713f0d72d6f6d2726d154b13f049eb49a597d9d7f5e3b6b5d8e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.measurement.2021.109788$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Guo, Runyuan</creatorcontrib><creatorcontrib>Liu, Han</creatorcontrib><title>Semisupervised dynamic soft sensor based on complementary ensemble empirical mode decomposition and deep learning</title><title>Measurement : journal of the International Measurement Confederation</title><description>•CEEMD and Isomap are combined to eliminate noise and redundancy in the data.•A new semisupervised dynamic soft sensor model named SSDGRU-CNN is proposed.•The soft sensor methodology has good dynamic performance and prediction accuracy.•The effectiveness is proven by measuring the rotor deformation of an air preheater. Noise, redundancy, and dynamic characteristics in industrial process data have been regarded as the key factors that affect the measurement accuracy of data-driven soft sensors. In this paper, a semi-supervised dynamic soft sensor is proposed to capture the dynamic characteristics of data while removing noise and redundancy within the data, thus ensuring improved accuracy. Complementary ensemble empirical mode decomposition and isometric feature mapping are combined to reduce noise and redundancy. A semi-supervised deep learning model is designed to capture the dynamic characteristics. Compared with traditional soft sensors, the effectiveness and superiority of this method are verified via an experiment using an air preheater of a power boiler. The proposed method achieves the lowest MAE of 0.1745 and the highest correlation coefficient of 0.9969. Compared to methods without data preprocessing, the MAE of the preprocessed soft sensor decreases by 22.28% on average, while the correlation coefficient increases by 0.24% on average.</description><subject>Complementary ensemble empirical mode decomposition</subject><subject>Correlation coefficients</subject><subject>Deep learning</subject><subject>Dynamic characteristics</subject><subject>Gated recurrent unit</subject><subject>Heating equipment</subject><subject>Measurement</subject><subject>Noise</subject><subject>Redundancy</subject><subject>Rotor thermal deformation</subject><subject>Semisupervised dynamic modeling</subject><subject>Sensors</subject><subject>Soft sensor</subject><issn>0263-2241</issn><issn>1873-412X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqNULtOwzAUtRBIlMI_GDGn2E5ixyOqeElIDHRgs5z4BrmK7dROK_XvcSgDI9OVzj0PnYPQLSUrSii_364c6LSP4MBPK0YYzbgUTXOGFrQRZVFR9nmOFoTxsmCsopfoKqUtIYSXki_Q7gOcTfsR4sEmMNgcvXa2wyn0E07gU4i41fMneNwFNw4_SToecX6CawfA4EYbbacH7IIBbGDmhWQnmzXaZ1OAEQ-go7f-6xpd9HpIcPN7l2jz9LhZvxRv78-v64e3omNCTkWjBScVYTUpQdCyJ0Yww3tumGDc0LpqZ7CS0FZS11IYaURfQ9nytjYNlEt0d7IdY9jtIU1qG_bR50TF6oYxKhtZZ5Y8sboYUorQqzFal9spStQ8sNqqPwOreWB1Gjhr1yct5BYHC1GlzoLvwNgI3aRMsP9w-QZ6UIzv</recordid><startdate>202110</startdate><enddate>202110</enddate><creator>Guo, Runyuan</creator><creator>Liu, Han</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202110</creationdate><title>Semisupervised dynamic soft sensor based on complementary ensemble empirical mode decomposition and deep learning</title><author>Guo, Runyuan ; Liu, Han</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c279t-8a760402503e713f0d72d6f6d2726d154b13f049eb49a597d9d7f5e3b6b5d8e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Complementary ensemble empirical mode decomposition</topic><topic>Correlation coefficients</topic><topic>Deep learning</topic><topic>Dynamic characteristics</topic><topic>Gated recurrent unit</topic><topic>Heating equipment</topic><topic>Measurement</topic><topic>Noise</topic><topic>Redundancy</topic><topic>Rotor thermal deformation</topic><topic>Semisupervised dynamic modeling</topic><topic>Sensors</topic><topic>Soft sensor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Runyuan</creatorcontrib><creatorcontrib>Liu, Han</creatorcontrib><collection>CrossRef</collection><jtitle>Measurement : journal of the International Measurement Confederation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Runyuan</au><au>Liu, Han</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semisupervised dynamic soft sensor based on complementary ensemble empirical mode decomposition and deep learning</atitle><jtitle>Measurement : journal of the International Measurement Confederation</jtitle><date>2021-10</date><risdate>2021</risdate><volume>183</volume><spage>109788</spage><pages>109788-</pages><artnum>109788</artnum><issn>0263-2241</issn><eissn>1873-412X</eissn><abstract>•CEEMD and Isomap are combined to eliminate noise and redundancy in the data.•A new semisupervised dynamic soft sensor model named SSDGRU-CNN is proposed.•The soft sensor methodology has good dynamic performance and prediction accuracy.•The effectiveness is proven by measuring the rotor deformation of an air preheater. Noise, redundancy, and dynamic characteristics in industrial process data have been regarded as the key factors that affect the measurement accuracy of data-driven soft sensors. In this paper, a semi-supervised dynamic soft sensor is proposed to capture the dynamic characteristics of data while removing noise and redundancy within the data, thus ensuring improved accuracy. Complementary ensemble empirical mode decomposition and isometric feature mapping are combined to reduce noise and redundancy. A semi-supervised deep learning model is designed to capture the dynamic characteristics. Compared with traditional soft sensors, the effectiveness and superiority of this method are verified via an experiment using an air preheater of a power boiler. The proposed method achieves the lowest MAE of 0.1745 and the highest correlation coefficient of 0.9969. Compared to methods without data preprocessing, the MAE of the preprocessed soft sensor decreases by 22.28% on average, while the correlation coefficient increases by 0.24% on average.</abstract><cop>London</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.measurement.2021.109788</doi></addata></record>
fulltext fulltext
identifier ISSN: 0263-2241
ispartof Measurement : journal of the International Measurement Confederation, 2021-10, Vol.183, p.109788, Article 109788
issn 0263-2241
1873-412X
language eng
recordid cdi_proquest_journals_2582219895
source Access via ScienceDirect (Elsevier)
subjects Complementary ensemble empirical mode decomposition
Correlation coefficients
Deep learning
Dynamic characteristics
Gated recurrent unit
Heating equipment
Measurement
Noise
Redundancy
Rotor thermal deformation
Semisupervised dynamic modeling
Sensors
Soft sensor
title Semisupervised dynamic soft sensor based on complementary ensemble empirical mode decomposition and deep learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T18%3A30%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semisupervised%20dynamic%20soft%20sensor%20based%20on%20complementary%20ensemble%20empirical%20mode%20decomposition%20and%20deep%20learning&rft.jtitle=Measurement%20:%20journal%20of%20the%20International%20Measurement%20Confederation&rft.au=Guo,%20Runyuan&rft.date=2021-10&rft.volume=183&rft.spage=109788&rft.pages=109788-&rft.artnum=109788&rft.issn=0263-2241&rft.eissn=1873-412X&rft_id=info:doi/10.1016/j.measurement.2021.109788&rft_dat=%3Cproquest_cross%3E2582219895%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2582219895&rft_id=info:pmid/&rft_els_id=S0263224121007417&rfr_iscdi=true