联合支持向量机和增强学习算法的多波束声学底质分类

基于多波束的声学底质分类是近年来快速发展起来的新型海底底质探测技术。针对多波束声学底质分类中底质类型多样化、类型之间差异较小等多分类难点问题,本文提出一种GA-SVM-AdaBoost算法。利用自适应性和全局搜索能力强的遗传算法(genetic algorithm,GA)去优化支持向量机(support vector machines,SVM),以获得最优模型初始参数,并将多个GA优化后的SVM作为弱分类器组成AdaBoost强分类器。对胶州湾采集到的多波束反向散射强度数据,经过精细处理后生成海底声呐镶嵌图;构建SVM-RFE-CBR算法从提取的36维声强空间特征中筛选出10维优势特征,将其输...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ce hui xue bao 2021-07, Vol.50 (7), p.972
Hauptverfasser: 纪雪, 唐秋华, 陈义兰, 李杰, 丁德秋
Format: Artikel
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!