干雪深度反演的同极化相位差模型

积雪深度是积雪的重要结构参数,获取高精度雪深空间分布信息对于流域尺度水资源管理、气候变化研究和灾害预报等具有重要意义。本文以新疆阿尔泰山南坡克兰河上游为研究区,利用C波段全极化GF-3数据及地面同步观测数据,根据VV与HH极化信号在积雪中折射率不同导致相位差异的原理,使用Maxwell-Garnett方程构建同极化相位差(co-polarized phase difference,CPD)的正演模型,并基于CPD与雪深关系构建了雪深反演模型。通过对具有不同积雪条件的浅雪区与深雪区分别进行雪深反演,获得雪深空间分布信息。同时对反演不确定性进行了分析,并与已有方法进行比较,研究结果表明:①假定研究...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ce hui xue bao 2021-07, Vol.50 (7), p.905
Hauptverfasser: 宋依娜, 肖鹏峰, 张学良, 卓越, 马威
Format: Artikel
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page 905
container_title Ce hui xue bao
container_volume 50
creator 宋依娜
肖鹏峰
张学良
卓越
马威
description 积雪深度是积雪的重要结构参数,获取高精度雪深空间分布信息对于流域尺度水资源管理、气候变化研究和灾害预报等具有重要意义。本文以新疆阿尔泰山南坡克兰河上游为研究区,利用C波段全极化GF-3数据及地面同步观测数据,根据VV与HH极化信号在积雪中折射率不同导致相位差异的原理,使用Maxwell-Garnett方程构建同极化相位差(co-polarized phase difference,CPD)的正演模型,并基于CPD与雪深关系构建了雪深反演模型。通过对具有不同积雪条件的浅雪区与深雪区分别进行雪深反演,获得雪深空间分布信息。同时对反演不确定性进行了分析,并与已有方法进行比较,研究结果表明:①假定研究区积雪各向异性介电常数恒定的理想情况下,CPD仅是雪深的函数,可用半经验的线性模型反演雪深,反演精度的高低与计算CPD过程中使用的滤波器的窗口大小有关,浅雪区的最优滤波窗口为59×59像元,反演精度R为0.83,RMSE为2.72 cm,深雪区的最优滤波窗口为33×33像元,反演精度R为0.54,RMSE为11.69 cm;②雪深反演误差与坡度显著相关,随着坡度的增加,雪深的反演误差呈现出显著增加的趋势,雪深反演不确定性受雪层变质程度、含水量及卫星入射角观测几何条件影响,反演方法对于干燥、雪层变质结晶程度低、均质的积雪及具有大入射角的SAR卫星有更好的适用性;③对比已有基于CPD模型的雪深反演方法,本文方法已经将反演所需要的参数减少为遥感获取的CPD数据,以及进行模型拟合的实测雪深数据,反演精度更高。研究表明CPD模型反演山区雪深空间分布是有效和可行的,研究成果为山区雪深遥感反演提供了新思路。
doi_str_mv 10.11947/j.AGCS.2021.20200125
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2582197124</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2582197124</sourcerecordid><originalsourceid>FETCH-proquest_journals_25821971243</originalsourceid><addsrcrecordid>eNpjYJA1NNAzNLQ0MdfP0nN0dw7WMzIwMgQRBgaGRqZMDJyGQIauoamlKQsSm4OBq7g4y8DA1MLEzJSTQffpzk0vZ696tn3j013Lnvb3Ptsz5fmslqcTep7Na3zaM-357B1P9vY-3b7u2YqFT-d18zCwpiXmFKfyQmluBmU31xBnD92CovzC0tTikvis_NKiPKBUvJGphZGhpbmhkYkxcaoANNlIyQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2582197124</pqid></control><display><type>article</type><title>干雪深度反演的同极化相位差模型</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>宋依娜 ; 肖鹏峰 ; 张学良 ; 卓越 ; 马威</creator><creatorcontrib>宋依娜 ; 肖鹏峰 ; 张学良 ; 卓越 ; 马威</creatorcontrib><description>积雪深度是积雪的重要结构参数,获取高精度雪深空间分布信息对于流域尺度水资源管理、气候变化研究和灾害预报等具有重要意义。本文以新疆阿尔泰山南坡克兰河上游为研究区,利用C波段全极化GF-3数据及地面同步观测数据,根据VV与HH极化信号在积雪中折射率不同导致相位差异的原理,使用Maxwell-Garnett方程构建同极化相位差(co-polarized phase difference,CPD)的正演模型,并基于CPD与雪深关系构建了雪深反演模型。通过对具有不同积雪条件的浅雪区与深雪区分别进行雪深反演,获得雪深空间分布信息。同时对反演不确定性进行了分析,并与已有方法进行比较,研究结果表明:①假定研究区积雪各向异性介电常数恒定的理想情况下,CPD仅是雪深的函数,可用半经验的线性模型反演雪深,反演精度的高低与计算CPD过程中使用的滤波器的窗口大小有关,浅雪区的最优滤波窗口为59×59像元,反演精度R为0.83,RMSE为2.72 cm,深雪区的最优滤波窗口为33×33像元,反演精度R为0.54,RMSE为11.69 cm;②雪深反演误差与坡度显著相关,随着坡度的增加,雪深的反演误差呈现出显著增加的趋势,雪深反演不确定性受雪层变质程度、含水量及卫星入射角观测几何条件影响,反演方法对于干燥、雪层变质结晶程度低、均质的积雪及具有大入射角的SAR卫星有更好的适用性;③对比已有基于CPD模型的雪深反演方法,本文方法已经将反演所需要的参数减少为遥感获取的CPD数据,以及进行模型拟合的实测雪深数据,反演精度更高。研究表明CPD模型反演山区雪深空间分布是有效和可行的,研究成果为山区雪深遥感反演提供了新思路。</description><identifier>ISSN: 1001-1595</identifier><identifier>EISSN: 1001-1595</identifier><identifier>DOI: 10.11947/j.AGCS.2021.20200125</identifier><language>chi ; eng</language><publisher>Beijing: Surveying and Mapping Press</publisher><subject>Accuracy ; C band ; Climate change ; Climate change research ; Crystallization ; Incidence angle ; Inversion ; Low pass filters ; Mathematical models ; Metamorphism ; Model accuracy ; Moisture content ; Mountains ; Parameters ; Permittivity ; Phase shift ; Pixels ; River basins ; Root-mean-square errors ; Snow ; Snow cover ; Snow depth ; Spatial distribution ; Synthetic aperture radar ; Water content ; Water depth ; Water management ; Water resources ; Water resources management</subject><ispartof>Ce hui xue bao, 2021-07, Vol.50 (7), p.905</ispartof><rights>Jul 2021. This work is published under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>宋依娜</creatorcontrib><creatorcontrib>肖鹏峰</creatorcontrib><creatorcontrib>张学良</creatorcontrib><creatorcontrib>卓越</creatorcontrib><creatorcontrib>马威</creatorcontrib><title>干雪深度反演的同极化相位差模型</title><title>Ce hui xue bao</title><description>积雪深度是积雪的重要结构参数,获取高精度雪深空间分布信息对于流域尺度水资源管理、气候变化研究和灾害预报等具有重要意义。本文以新疆阿尔泰山南坡克兰河上游为研究区,利用C波段全极化GF-3数据及地面同步观测数据,根据VV与HH极化信号在积雪中折射率不同导致相位差异的原理,使用Maxwell-Garnett方程构建同极化相位差(co-polarized phase difference,CPD)的正演模型,并基于CPD与雪深关系构建了雪深反演模型。通过对具有不同积雪条件的浅雪区与深雪区分别进行雪深反演,获得雪深空间分布信息。同时对反演不确定性进行了分析,并与已有方法进行比较,研究结果表明:①假定研究区积雪各向异性介电常数恒定的理想情况下,CPD仅是雪深的函数,可用半经验的线性模型反演雪深,反演精度的高低与计算CPD过程中使用的滤波器的窗口大小有关,浅雪区的最优滤波窗口为59×59像元,反演精度R为0.83,RMSE为2.72 cm,深雪区的最优滤波窗口为33×33像元,反演精度R为0.54,RMSE为11.69 cm;②雪深反演误差与坡度显著相关,随着坡度的增加,雪深的反演误差呈现出显著增加的趋势,雪深反演不确定性受雪层变质程度、含水量及卫星入射角观测几何条件影响,反演方法对于干燥、雪层变质结晶程度低、均质的积雪及具有大入射角的SAR卫星有更好的适用性;③对比已有基于CPD模型的雪深反演方法,本文方法已经将反演所需要的参数减少为遥感获取的CPD数据,以及进行模型拟合的实测雪深数据,反演精度更高。研究表明CPD模型反演山区雪深空间分布是有效和可行的,研究成果为山区雪深遥感反演提供了新思路。</description><subject>Accuracy</subject><subject>C band</subject><subject>Climate change</subject><subject>Climate change research</subject><subject>Crystallization</subject><subject>Incidence angle</subject><subject>Inversion</subject><subject>Low pass filters</subject><subject>Mathematical models</subject><subject>Metamorphism</subject><subject>Model accuracy</subject><subject>Moisture content</subject><subject>Mountains</subject><subject>Parameters</subject><subject>Permittivity</subject><subject>Phase shift</subject><subject>Pixels</subject><subject>River basins</subject><subject>Root-mean-square errors</subject><subject>Snow</subject><subject>Snow cover</subject><subject>Snow depth</subject><subject>Spatial distribution</subject><subject>Synthetic aperture radar</subject><subject>Water content</subject><subject>Water depth</subject><subject>Water management</subject><subject>Water resources</subject><subject>Water resources management</subject><issn>1001-1595</issn><issn>1001-1595</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpjYJA1NNAzNLQ0MdfP0nN0dw7WMzIwMgQRBgaGRqZMDJyGQIauoamlKQsSm4OBq7g4y8DA1MLEzJSTQffpzk0vZ696tn3j013Lnvb3Ptsz5fmslqcTep7Na3zaM-357B1P9vY-3b7u2YqFT-d18zCwpiXmFKfyQmluBmU31xBnD92CovzC0tTikvis_NKiPKBUvJGphZGhpbmhkYkxcaoANNlIyQ</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>宋依娜</creator><creator>肖鹏峰</creator><creator>张学良</creator><creator>卓越</creator><creator>马威</creator><general>Surveying and Mapping Press</general><scope>3V.</scope><scope>7X2</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M0K</scope><scope>M7P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope></search><sort><creationdate>20210701</creationdate><title>干雪深度反演的同极化相位差模型</title><author>宋依娜 ; 肖鹏峰 ; 张学良 ; 卓越 ; 马威</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25821971243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>chi ; eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>C band</topic><topic>Climate change</topic><topic>Climate change research</topic><topic>Crystallization</topic><topic>Incidence angle</topic><topic>Inversion</topic><topic>Low pass filters</topic><topic>Mathematical models</topic><topic>Metamorphism</topic><topic>Model accuracy</topic><topic>Moisture content</topic><topic>Mountains</topic><topic>Parameters</topic><topic>Permittivity</topic><topic>Phase shift</topic><topic>Pixels</topic><topic>River basins</topic><topic>Root-mean-square errors</topic><topic>Snow</topic><topic>Snow cover</topic><topic>Snow depth</topic><topic>Spatial distribution</topic><topic>Synthetic aperture radar</topic><topic>Water content</topic><topic>Water depth</topic><topic>Water management</topic><topic>Water resources</topic><topic>Water resources management</topic><toplevel>online_resources</toplevel><creatorcontrib>宋依娜</creatorcontrib><creatorcontrib>肖鹏峰</creatorcontrib><creatorcontrib>张学良</creatorcontrib><creatorcontrib>卓越</creatorcontrib><creatorcontrib>马威</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Biological Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><jtitle>Ce hui xue bao</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>宋依娜</au><au>肖鹏峰</au><au>张学良</au><au>卓越</au><au>马威</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>干雪深度反演的同极化相位差模型</atitle><jtitle>Ce hui xue bao</jtitle><date>2021-07-01</date><risdate>2021</risdate><volume>50</volume><issue>7</issue><spage>905</spage><pages>905-</pages><issn>1001-1595</issn><eissn>1001-1595</eissn><abstract>积雪深度是积雪的重要结构参数,获取高精度雪深空间分布信息对于流域尺度水资源管理、气候变化研究和灾害预报等具有重要意义。本文以新疆阿尔泰山南坡克兰河上游为研究区,利用C波段全极化GF-3数据及地面同步观测数据,根据VV与HH极化信号在积雪中折射率不同导致相位差异的原理,使用Maxwell-Garnett方程构建同极化相位差(co-polarized phase difference,CPD)的正演模型,并基于CPD与雪深关系构建了雪深反演模型。通过对具有不同积雪条件的浅雪区与深雪区分别进行雪深反演,获得雪深空间分布信息。同时对反演不确定性进行了分析,并与已有方法进行比较,研究结果表明:①假定研究区积雪各向异性介电常数恒定的理想情况下,CPD仅是雪深的函数,可用半经验的线性模型反演雪深,反演精度的高低与计算CPD过程中使用的滤波器的窗口大小有关,浅雪区的最优滤波窗口为59×59像元,反演精度R为0.83,RMSE为2.72 cm,深雪区的最优滤波窗口为33×33像元,反演精度R为0.54,RMSE为11.69 cm;②雪深反演误差与坡度显著相关,随着坡度的增加,雪深的反演误差呈现出显著增加的趋势,雪深反演不确定性受雪层变质程度、含水量及卫星入射角观测几何条件影响,反演方法对于干燥、雪层变质结晶程度低、均质的积雪及具有大入射角的SAR卫星有更好的适用性;③对比已有基于CPD模型的雪深反演方法,本文方法已经将反演所需要的参数减少为遥感获取的CPD数据,以及进行模型拟合的实测雪深数据,反演精度更高。研究表明CPD模型反演山区雪深空间分布是有效和可行的,研究成果为山区雪深遥感反演提供了新思路。</abstract><cop>Beijing</cop><pub>Surveying and Mapping Press</pub><doi>10.11947/j.AGCS.2021.20200125</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1001-1595
ispartof Ce hui xue bao, 2021-07, Vol.50 (7), p.905
issn 1001-1595
1001-1595
language chi ; eng
recordid cdi_proquest_journals_2582197124
source EZB-FREE-00999 freely available EZB journals
subjects Accuracy
C band
Climate change
Climate change research
Crystallization
Incidence angle
Inversion
Low pass filters
Mathematical models
Metamorphism
Model accuracy
Moisture content
Mountains
Parameters
Permittivity
Phase shift
Pixels
River basins
Root-mean-square errors
Snow
Snow cover
Snow depth
Spatial distribution
Synthetic aperture radar
Water content
Water depth
Water management
Water resources
Water resources management
title 干雪深度反演的同极化相位差模型
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T04%3A28%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=%E5%B9%B2%E9%9B%AA%E6%B7%B1%E5%BA%A6%E5%8F%8D%E6%BC%94%E7%9A%84%E5%90%8C%E6%9E%81%E5%8C%96%E7%9B%B8%E4%BD%8D%E5%B7%AE%E6%A8%A1%E5%9E%8B&rft.jtitle=Ce%20hui%20xue%20bao&rft.au=%E5%AE%8B%E4%BE%9D%E5%A8%9C&rft.date=2021-07-01&rft.volume=50&rft.issue=7&rft.spage=905&rft.pages=905-&rft.issn=1001-1595&rft.eissn=1001-1595&rft_id=info:doi/10.11947/j.AGCS.2021.20200125&rft_dat=%3Cproquest%3E2582197124%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2582197124&rft_id=info:pmid/&rfr_iscdi=true