Substituent effects on through-space intervalence charge transfer in cofacial metal-organic frameworks

Electroactive metal-organic frameworks (MOFs) are an attractive class of materials owing to their multifunctional 3-dimensional structures, the properties of which can be modulated by changing the redox states of the components. In order to realise both fundamental and applied goals for these materi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Faraday discussions 2021-10, Vol.231, p.152-167
Hauptverfasser: Doheny, Patrick W, Hua, Carol, Chan, Bun, Tuna, Floriana, Collison, David, Kepert, Cameron J, D'Alessandro, Deanna M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 167
container_issue
container_start_page 152
container_title Faraday discussions
container_volume 231
creator Doheny, Patrick W
Hua, Carol
Chan, Bun
Tuna, Floriana
Collison, David
Kepert, Cameron J
D'Alessandro, Deanna M
description Electroactive metal-organic frameworks (MOFs) are an attractive class of materials owing to their multifunctional 3-dimensional structures, the properties of which can be modulated by changing the redox states of the components. In order to realise both fundamental and applied goals for these materials, a deeper understanding of the structure-function relationships that govern the charge transfer mechanisms is required. Chemical or electrochemical reduction of the framework [Zn(BPPFTzTz)(tdc)]·2DMF, hereafter denoted ZnFTzTz (where BPPFTzTz = 2,5-bis(3-fluoro-4-(pyridin-4-yl)phenyl)thiazolo[5,4- d ]thiazole), generates mixed-valence states with optical signatures indicative of through-space intervalence charge transfer (IVCT) between the cofacially stacked ligands. Fluorination of the TzTz ligands influences the IVCT band parameters relative to the unsubstituted parent system, as revealed through Marcus-Hush theory analysis and single crystal UV-Vis spectroscopy. Using a combined experimental, theoretical and density functional theory (DFT) analysis, important insights into the effects of structural modifications, such as ligand substitution, on the degree of electronic coupling and rate of electron transfer have been obtained. Using a combined experimental, theoretical and density functional theory analysis, important insights into the effects of structural modifications on the degree of electronic coupling and rate of electron transfer are obtained for the framework [Zn(BPPFTzTz)(tdc)]·2DMF.
doi_str_mv 10.1039/d1fd00021g
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2582056709</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2582056709</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-fbd2fd5f4a092835969eaf6def011475b87a714ab284cc7cf66e9bf5a5cb2d403</originalsourceid><addsrcrecordid>eNpd0VFLwzAQAOAiCs7pi-9CwRcRqkmbpO2jODeFgQ_qc7mml66zTWaSKv57MycKPt0d93Ecd1F0SskVJVl53VDVEEJS2u5FE5oJlnBWFvvbnJeJEIwcRkfOrYMRoTuJ1NNYO9_5EbWPUSmU3sVGx35lzdiuErcBiXGnPdp36FGHQq7Athh7C9optKEZS6NAdtDHA3roE2Nb0J2MlYUBP4x9dcfRgYLe4clPnEYv87vn2_tk-bh4uL1ZJjKjzCeqblLVcMWAlGkRVhYlghINKkIpy3ld5JBTBnVaMClzqYTAslYcuKzThpFsGl3s5m6seRvR-WronMS-B41mdFXKOREppzkN9PwfXZvR6rBdUEVKuMhJGdTlTklrnLOoqo3tBrCfFSXV9uTVjM5n3ydfBHy2w9bJX_f3kuwL0md_Qw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2582056709</pqid></control><display><type>article</type><title>Substituent effects on through-space intervalence charge transfer in cofacial metal-organic frameworks</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Doheny, Patrick W ; Hua, Carol ; Chan, Bun ; Tuna, Floriana ; Collison, David ; Kepert, Cameron J ; D'Alessandro, Deanna M</creator><creatorcontrib>Doheny, Patrick W ; Hua, Carol ; Chan, Bun ; Tuna, Floriana ; Collison, David ; Kepert, Cameron J ; D'Alessandro, Deanna M</creatorcontrib><description>Electroactive metal-organic frameworks (MOFs) are an attractive class of materials owing to their multifunctional 3-dimensional structures, the properties of which can be modulated by changing the redox states of the components. In order to realise both fundamental and applied goals for these materials, a deeper understanding of the structure-function relationships that govern the charge transfer mechanisms is required. Chemical or electrochemical reduction of the framework [Zn(BPPFTzTz)(tdc)]·2DMF, hereafter denoted ZnFTzTz (where BPPFTzTz = 2,5-bis(3-fluoro-4-(pyridin-4-yl)phenyl)thiazolo[5,4- d ]thiazole), generates mixed-valence states with optical signatures indicative of through-space intervalence charge transfer (IVCT) between the cofacially stacked ligands. Fluorination of the TzTz ligands influences the IVCT band parameters relative to the unsubstituted parent system, as revealed through Marcus-Hush theory analysis and single crystal UV-Vis spectroscopy. Using a combined experimental, theoretical and density functional theory (DFT) analysis, important insights into the effects of structural modifications, such as ligand substitution, on the degree of electronic coupling and rate of electron transfer have been obtained. Using a combined experimental, theoretical and density functional theory analysis, important insights into the effects of structural modifications on the degree of electronic coupling and rate of electron transfer are obtained for the framework [Zn(BPPFTzTz)(tdc)]·2DMF.</description><identifier>ISSN: 1359-6640</identifier><identifier>EISSN: 1364-5498</identifier><identifier>DOI: 10.1039/d1fd00021g</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Charge transfer ; Chemical reduction ; Density functional theory ; Electron transfer ; Fluorination ; Ligands ; Metal-organic frameworks ; Single crystals ; Valence</subject><ispartof>Faraday discussions, 2021-10, Vol.231, p.152-167</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c314t-fbd2fd5f4a092835969eaf6def011475b87a714ab284cc7cf66e9bf5a5cb2d403</citedby><cites>FETCH-LOGICAL-c314t-fbd2fd5f4a092835969eaf6def011475b87a714ab284cc7cf66e9bf5a5cb2d403</cites><orcidid>0000-0002-4207-9963 ; 0000-0002-1497-2543 ; 0000-0002-5541-1750 ; 0000-0003-1705-8850 ; 0000-0002-0082-5497</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Doheny, Patrick W</creatorcontrib><creatorcontrib>Hua, Carol</creatorcontrib><creatorcontrib>Chan, Bun</creatorcontrib><creatorcontrib>Tuna, Floriana</creatorcontrib><creatorcontrib>Collison, David</creatorcontrib><creatorcontrib>Kepert, Cameron J</creatorcontrib><creatorcontrib>D'Alessandro, Deanna M</creatorcontrib><title>Substituent effects on through-space intervalence charge transfer in cofacial metal-organic frameworks</title><title>Faraday discussions</title><description>Electroactive metal-organic frameworks (MOFs) are an attractive class of materials owing to their multifunctional 3-dimensional structures, the properties of which can be modulated by changing the redox states of the components. In order to realise both fundamental and applied goals for these materials, a deeper understanding of the structure-function relationships that govern the charge transfer mechanisms is required. Chemical or electrochemical reduction of the framework [Zn(BPPFTzTz)(tdc)]·2DMF, hereafter denoted ZnFTzTz (where BPPFTzTz = 2,5-bis(3-fluoro-4-(pyridin-4-yl)phenyl)thiazolo[5,4- d ]thiazole), generates mixed-valence states with optical signatures indicative of through-space intervalence charge transfer (IVCT) between the cofacially stacked ligands. Fluorination of the TzTz ligands influences the IVCT band parameters relative to the unsubstituted parent system, as revealed through Marcus-Hush theory analysis and single crystal UV-Vis spectroscopy. Using a combined experimental, theoretical and density functional theory (DFT) analysis, important insights into the effects of structural modifications, such as ligand substitution, on the degree of electronic coupling and rate of electron transfer have been obtained. Using a combined experimental, theoretical and density functional theory analysis, important insights into the effects of structural modifications on the degree of electronic coupling and rate of electron transfer are obtained for the framework [Zn(BPPFTzTz)(tdc)]·2DMF.</description><subject>Charge transfer</subject><subject>Chemical reduction</subject><subject>Density functional theory</subject><subject>Electron transfer</subject><subject>Fluorination</subject><subject>Ligands</subject><subject>Metal-organic frameworks</subject><subject>Single crystals</subject><subject>Valence</subject><issn>1359-6640</issn><issn>1364-5498</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpd0VFLwzAQAOAiCs7pi-9CwRcRqkmbpO2jODeFgQ_qc7mml66zTWaSKv57MycKPt0d93Ecd1F0SskVJVl53VDVEEJS2u5FE5oJlnBWFvvbnJeJEIwcRkfOrYMRoTuJ1NNYO9_5EbWPUSmU3sVGx35lzdiuErcBiXGnPdp36FGHQq7Athh7C9optKEZS6NAdtDHA3roE2Nb0J2MlYUBP4x9dcfRgYLe4clPnEYv87vn2_tk-bh4uL1ZJjKjzCeqblLVcMWAlGkRVhYlghINKkIpy3ld5JBTBnVaMClzqYTAslYcuKzThpFsGl3s5m6seRvR-WronMS-B41mdFXKOREppzkN9PwfXZvR6rBdUEVKuMhJGdTlTklrnLOoqo3tBrCfFSXV9uTVjM5n3ydfBHy2w9bJX_f3kuwL0md_Qw</recordid><startdate>20211015</startdate><enddate>20211015</enddate><creator>Doheny, Patrick W</creator><creator>Hua, Carol</creator><creator>Chan, Bun</creator><creator>Tuna, Floriana</creator><creator>Collison, David</creator><creator>Kepert, Cameron J</creator><creator>D'Alessandro, Deanna M</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4207-9963</orcidid><orcidid>https://orcid.org/0000-0002-1497-2543</orcidid><orcidid>https://orcid.org/0000-0002-5541-1750</orcidid><orcidid>https://orcid.org/0000-0003-1705-8850</orcidid><orcidid>https://orcid.org/0000-0002-0082-5497</orcidid></search><sort><creationdate>20211015</creationdate><title>Substituent effects on through-space intervalence charge transfer in cofacial metal-organic frameworks</title><author>Doheny, Patrick W ; Hua, Carol ; Chan, Bun ; Tuna, Floriana ; Collison, David ; Kepert, Cameron J ; D'Alessandro, Deanna M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-fbd2fd5f4a092835969eaf6def011475b87a714ab284cc7cf66e9bf5a5cb2d403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Charge transfer</topic><topic>Chemical reduction</topic><topic>Density functional theory</topic><topic>Electron transfer</topic><topic>Fluorination</topic><topic>Ligands</topic><topic>Metal-organic frameworks</topic><topic>Single crystals</topic><topic>Valence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Doheny, Patrick W</creatorcontrib><creatorcontrib>Hua, Carol</creatorcontrib><creatorcontrib>Chan, Bun</creatorcontrib><creatorcontrib>Tuna, Floriana</creatorcontrib><creatorcontrib>Collison, David</creatorcontrib><creatorcontrib>Kepert, Cameron J</creatorcontrib><creatorcontrib>D'Alessandro, Deanna M</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Faraday discussions</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Doheny, Patrick W</au><au>Hua, Carol</au><au>Chan, Bun</au><au>Tuna, Floriana</au><au>Collison, David</au><au>Kepert, Cameron J</au><au>D'Alessandro, Deanna M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Substituent effects on through-space intervalence charge transfer in cofacial metal-organic frameworks</atitle><jtitle>Faraday discussions</jtitle><date>2021-10-15</date><risdate>2021</risdate><volume>231</volume><spage>152</spage><epage>167</epage><pages>152-167</pages><issn>1359-6640</issn><eissn>1364-5498</eissn><abstract>Electroactive metal-organic frameworks (MOFs) are an attractive class of materials owing to their multifunctional 3-dimensional structures, the properties of which can be modulated by changing the redox states of the components. In order to realise both fundamental and applied goals for these materials, a deeper understanding of the structure-function relationships that govern the charge transfer mechanisms is required. Chemical or electrochemical reduction of the framework [Zn(BPPFTzTz)(tdc)]·2DMF, hereafter denoted ZnFTzTz (where BPPFTzTz = 2,5-bis(3-fluoro-4-(pyridin-4-yl)phenyl)thiazolo[5,4- d ]thiazole), generates mixed-valence states with optical signatures indicative of through-space intervalence charge transfer (IVCT) between the cofacially stacked ligands. Fluorination of the TzTz ligands influences the IVCT band parameters relative to the unsubstituted parent system, as revealed through Marcus-Hush theory analysis and single crystal UV-Vis spectroscopy. Using a combined experimental, theoretical and density functional theory (DFT) analysis, important insights into the effects of structural modifications, such as ligand substitution, on the degree of electronic coupling and rate of electron transfer have been obtained. Using a combined experimental, theoretical and density functional theory analysis, important insights into the effects of structural modifications on the degree of electronic coupling and rate of electron transfer are obtained for the framework [Zn(BPPFTzTz)(tdc)]·2DMF.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d1fd00021g</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-4207-9963</orcidid><orcidid>https://orcid.org/0000-0002-1497-2543</orcidid><orcidid>https://orcid.org/0000-0002-5541-1750</orcidid><orcidid>https://orcid.org/0000-0003-1705-8850</orcidid><orcidid>https://orcid.org/0000-0002-0082-5497</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1359-6640
ispartof Faraday discussions, 2021-10, Vol.231, p.152-167
issn 1359-6640
1364-5498
language eng
recordid cdi_proquest_journals_2582056709
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Charge transfer
Chemical reduction
Density functional theory
Electron transfer
Fluorination
Ligands
Metal-organic frameworks
Single crystals
Valence
title Substituent effects on through-space intervalence charge transfer in cofacial metal-organic frameworks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T10%3A50%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Substituent%20effects%20on%20through-space%20intervalence%20charge%20transfer%20in%20cofacial%20metal-organic%20frameworks&rft.jtitle=Faraday%20discussions&rft.au=Doheny,%20Patrick%20W&rft.date=2021-10-15&rft.volume=231&rft.spage=152&rft.epage=167&rft.pages=152-167&rft.issn=1359-6640&rft.eissn=1364-5498&rft_id=info:doi/10.1039/d1fd00021g&rft_dat=%3Cproquest_cross%3E2582056709%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2582056709&rft_id=info:pmid/&rfr_iscdi=true