Regularized Step Directions in Nonlinear Conjugate Gradient Methods

Conjugate gradient minimization methods (CGM) and their accelerated variants are widely used. We focus on the use of cubic regularization to improve the CGM direction independent of the step length computation. In this paper, we propose the Hybrid Cubic Regularization of CGM, where regularized steps...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-08
Hauptverfasser: Buhler, Cassidy K, Benson, Hande Y, Shanno, David F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Buhler, Cassidy K
Benson, Hande Y
Shanno, David F
description Conjugate gradient minimization methods (CGM) and their accelerated variants are widely used. We focus on the use of cubic regularization to improve the CGM direction independent of the step length computation. In this paper, we propose the Hybrid Cubic Regularization of CGM, where regularized steps are used selectively. Using Shanno's reformulation of CGM as a memoryless BFGS method, we derive new formulas for the regularized step direction. We show that the regularized step direction uses the same order of computational burden per iteration as its non-regularized version. Moreover, the Hybrid Cubic Regularization of CGM exhibits global convergence with fewer assumptions. In numerical experiments, the new step directions are shown to require fewer iteration counts, improve runtime, and reduce the need to reset the step direction. Overall, the Hybrid Cubic Regularization of CGM exhibits the same memoryless and matrix-free properties, while outperforming CGM as a memoryless BFGS method in iterations and runtime.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2581963795</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2581963795</sourcerecordid><originalsourceid>FETCH-proquest_journals_25819637953</originalsourceid><addsrcrecordid>eNqNyrsKwjAUgOEgCBbtOxxwLrSJ6WWut0UHdS_BHGtKOam5LD69Dj6A0z98_4wlXIgiqzecL1jq_ZDnOS8rLqVIWHvBPo7KmTdquAacYGsc3oOx5MEQnC2NhlA5aC0NsVcB4eCUNkgBThieVvsVmz_U6DH9dcnW-92tPWaTs6-IPnSDjY6-1HFZF00pqkaK_64PDS86Yw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2581963795</pqid></control><display><type>article</type><title>Regularized Step Directions in Nonlinear Conjugate Gradient Methods</title><source>Free E- Journals</source><creator>Buhler, Cassidy K ; Benson, Hande Y ; Shanno, David F</creator><creatorcontrib>Buhler, Cassidy K ; Benson, Hande Y ; Shanno, David F</creatorcontrib><description>Conjugate gradient minimization methods (CGM) and their accelerated variants are widely used. We focus on the use of cubic regularization to improve the CGM direction independent of the step length computation. In this paper, we propose the Hybrid Cubic Regularization of CGM, where regularized steps are used selectively. Using Shanno's reformulation of CGM as a memoryless BFGS method, we derive new formulas for the regularized step direction. We show that the regularized step direction uses the same order of computational burden per iteration as its non-regularized version. Moreover, the Hybrid Cubic Regularization of CGM exhibits global convergence with fewer assumptions. In numerical experiments, the new step directions are shown to require fewer iteration counts, improve runtime, and reduce the need to reset the step direction. Overall, the Hybrid Cubic Regularization of CGM exhibits the same memoryless and matrix-free properties, while outperforming CGM as a memoryless BFGS method in iterations and runtime.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Conjugate gradient method ; Iterative methods ; Machine learning ; Optimization ; Regularization</subject><ispartof>arXiv.org, 2024-08</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Buhler, Cassidy K</creatorcontrib><creatorcontrib>Benson, Hande Y</creatorcontrib><creatorcontrib>Shanno, David F</creatorcontrib><title>Regularized Step Directions in Nonlinear Conjugate Gradient Methods</title><title>arXiv.org</title><description>Conjugate gradient minimization methods (CGM) and their accelerated variants are widely used. We focus on the use of cubic regularization to improve the CGM direction independent of the step length computation. In this paper, we propose the Hybrid Cubic Regularization of CGM, where regularized steps are used selectively. Using Shanno's reformulation of CGM as a memoryless BFGS method, we derive new formulas for the regularized step direction. We show that the regularized step direction uses the same order of computational burden per iteration as its non-regularized version. Moreover, the Hybrid Cubic Regularization of CGM exhibits global convergence with fewer assumptions. In numerical experiments, the new step directions are shown to require fewer iteration counts, improve runtime, and reduce the need to reset the step direction. Overall, the Hybrid Cubic Regularization of CGM exhibits the same memoryless and matrix-free properties, while outperforming CGM as a memoryless BFGS method in iterations and runtime.</description><subject>Conjugate gradient method</subject><subject>Iterative methods</subject><subject>Machine learning</subject><subject>Optimization</subject><subject>Regularization</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNyrsKwjAUgOEgCBbtOxxwLrSJ6WWut0UHdS_BHGtKOam5LD69Dj6A0z98_4wlXIgiqzecL1jq_ZDnOS8rLqVIWHvBPo7KmTdquAacYGsc3oOx5MEQnC2NhlA5aC0NsVcB4eCUNkgBThieVvsVmz_U6DH9dcnW-92tPWaTs6-IPnSDjY6-1HFZF00pqkaK_64PDS86Yw</recordid><startdate>20240828</startdate><enddate>20240828</enddate><creator>Buhler, Cassidy K</creator><creator>Benson, Hande Y</creator><creator>Shanno, David F</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240828</creationdate><title>Regularized Step Directions in Nonlinear Conjugate Gradient Methods</title><author>Buhler, Cassidy K ; Benson, Hande Y ; Shanno, David F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25819637953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Conjugate gradient method</topic><topic>Iterative methods</topic><topic>Machine learning</topic><topic>Optimization</topic><topic>Regularization</topic><toplevel>online_resources</toplevel><creatorcontrib>Buhler, Cassidy K</creatorcontrib><creatorcontrib>Benson, Hande Y</creatorcontrib><creatorcontrib>Shanno, David F</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Buhler, Cassidy K</au><au>Benson, Hande Y</au><au>Shanno, David F</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Regularized Step Directions in Nonlinear Conjugate Gradient Methods</atitle><jtitle>arXiv.org</jtitle><date>2024-08-28</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Conjugate gradient minimization methods (CGM) and their accelerated variants are widely used. We focus on the use of cubic regularization to improve the CGM direction independent of the step length computation. In this paper, we propose the Hybrid Cubic Regularization of CGM, where regularized steps are used selectively. Using Shanno's reformulation of CGM as a memoryless BFGS method, we derive new formulas for the regularized step direction. We show that the regularized step direction uses the same order of computational burden per iteration as its non-regularized version. Moreover, the Hybrid Cubic Regularization of CGM exhibits global convergence with fewer assumptions. In numerical experiments, the new step directions are shown to require fewer iteration counts, improve runtime, and reduce the need to reset the step direction. Overall, the Hybrid Cubic Regularization of CGM exhibits the same memoryless and matrix-free properties, while outperforming CGM as a memoryless BFGS method in iterations and runtime.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-08
issn 2331-8422
language eng
recordid cdi_proquest_journals_2581963795
source Free E- Journals
subjects Conjugate gradient method
Iterative methods
Machine learning
Optimization
Regularization
title Regularized Step Directions in Nonlinear Conjugate Gradient Methods
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T14%3A10%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Regularized%20Step%20Directions%20in%20Nonlinear%20Conjugate%20Gradient%20Methods&rft.jtitle=arXiv.org&rft.au=Buhler,%20Cassidy%20K&rft.date=2024-08-28&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2581963795%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2581963795&rft_id=info:pmid/&rfr_iscdi=true