A Review of the Deep Sea Treasure problem as a Multi-Objective Reinforcement Learning Benchmark

In this paper, the authors investigate the Deep Sea Treasure (DST) problem as proposed by Vamplew et al. Through a number of proofs, the authors show the original DST problem to be quite basic, and not always representative of practical Multi-Objective Optimization problems. In an attempt to bring t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-05
Hauptverfasser: Cassimon, Amber, Eyckerman, Reinout, Mercelis, Siegfried, Latré, Steven, Hellinckx, Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Cassimon, Amber
Eyckerman, Reinout
Mercelis, Siegfried
Latré, Steven
Hellinckx, Peter
description In this paper, the authors investigate the Deep Sea Treasure (DST) problem as proposed by Vamplew et al. Through a number of proofs, the authors show the original DST problem to be quite basic, and not always representative of practical Multi-Objective Optimization problems. In an attempt to bring theory closer to practice, the authors propose an alternative, improved version of the DST problem, and prove that some of the properties that simplify the original DST problem no longer hold. The authors also provide a reference implementation and perform a comparison between their implementation, and other existing open-source implementations of the problem. Finally, the authors also provide a complete Pareto-front for their new DST problem.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2581963670</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2581963670</sourcerecordid><originalsourceid>FETCH-proquest_journals_25819636703</originalsourceid><addsrcrecordid>eNqNjL0KwjAYRYMgKNp3-MC50Cb2x9FfHBRB3Usst5rapjVJ9fXt4AM43eGccwdszIUI_XTO-Yh51pZBEPA44VEkxixb0hlvhQ81BbkHaAO0dIGkq4G0nQG1prlVqElaknTsKqf8061E7tQbfax00ZgcNbSjA6TRSt9pBZ0_ammeUzYsZGXh_XbCZrvtdb33-9dXB-uysumM7lHGozRcxCJOAvGf9QXrjEOS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2581963670</pqid></control><display><type>article</type><title>A Review of the Deep Sea Treasure problem as a Multi-Objective Reinforcement Learning Benchmark</title><source>Free E- Journals</source><creator>Cassimon, Amber ; Eyckerman, Reinout ; Mercelis, Siegfried ; Latré, Steven ; Hellinckx, Peter</creator><creatorcontrib>Cassimon, Amber ; Eyckerman, Reinout ; Mercelis, Siegfried ; Latré, Steven ; Hellinckx, Peter</creatorcontrib><description>In this paper, the authors investigate the Deep Sea Treasure (DST) problem as proposed by Vamplew et al. Through a number of proofs, the authors show the original DST problem to be quite basic, and not always representative of practical Multi-Objective Optimization problems. In an attempt to bring theory closer to practice, the authors propose an alternative, improved version of the DST problem, and prove that some of the properties that simplify the original DST problem no longer hold. The authors also provide a reference implementation and perform a comparison between their implementation, and other existing open-source implementations of the problem. Finally, the authors also provide a complete Pareto-front for their new DST problem.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Deep sea environments ; Multiple objective analysis ; Pareto optimization</subject><ispartof>arXiv.org, 2024-05</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Cassimon, Amber</creatorcontrib><creatorcontrib>Eyckerman, Reinout</creatorcontrib><creatorcontrib>Mercelis, Siegfried</creatorcontrib><creatorcontrib>Latré, Steven</creatorcontrib><creatorcontrib>Hellinckx, Peter</creatorcontrib><title>A Review of the Deep Sea Treasure problem as a Multi-Objective Reinforcement Learning Benchmark</title><title>arXiv.org</title><description>In this paper, the authors investigate the Deep Sea Treasure (DST) problem as proposed by Vamplew et al. Through a number of proofs, the authors show the original DST problem to be quite basic, and not always representative of practical Multi-Objective Optimization problems. In an attempt to bring theory closer to practice, the authors propose an alternative, improved version of the DST problem, and prove that some of the properties that simplify the original DST problem no longer hold. The authors also provide a reference implementation and perform a comparison between their implementation, and other existing open-source implementations of the problem. Finally, the authors also provide a complete Pareto-front for their new DST problem.</description><subject>Deep sea environments</subject><subject>Multiple objective analysis</subject><subject>Pareto optimization</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjL0KwjAYRYMgKNp3-MC50Cb2x9FfHBRB3Usst5rapjVJ9fXt4AM43eGccwdszIUI_XTO-Yh51pZBEPA44VEkxixb0hlvhQ81BbkHaAO0dIGkq4G0nQG1prlVqElaknTsKqf8061E7tQbfax00ZgcNbSjA6TRSt9pBZ0_ammeUzYsZGXh_XbCZrvtdb33-9dXB-uysumM7lHGozRcxCJOAvGf9QXrjEOS</recordid><startdate>20240521</startdate><enddate>20240521</enddate><creator>Cassimon, Amber</creator><creator>Eyckerman, Reinout</creator><creator>Mercelis, Siegfried</creator><creator>Latré, Steven</creator><creator>Hellinckx, Peter</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240521</creationdate><title>A Review of the Deep Sea Treasure problem as a Multi-Objective Reinforcement Learning Benchmark</title><author>Cassimon, Amber ; Eyckerman, Reinout ; Mercelis, Siegfried ; Latré, Steven ; Hellinckx, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25819636703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Deep sea environments</topic><topic>Multiple objective analysis</topic><topic>Pareto optimization</topic><toplevel>online_resources</toplevel><creatorcontrib>Cassimon, Amber</creatorcontrib><creatorcontrib>Eyckerman, Reinout</creatorcontrib><creatorcontrib>Mercelis, Siegfried</creatorcontrib><creatorcontrib>Latré, Steven</creatorcontrib><creatorcontrib>Hellinckx, Peter</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cassimon, Amber</au><au>Eyckerman, Reinout</au><au>Mercelis, Siegfried</au><au>Latré, Steven</au><au>Hellinckx, Peter</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>A Review of the Deep Sea Treasure problem as a Multi-Objective Reinforcement Learning Benchmark</atitle><jtitle>arXiv.org</jtitle><date>2024-05-21</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>In this paper, the authors investigate the Deep Sea Treasure (DST) problem as proposed by Vamplew et al. Through a number of proofs, the authors show the original DST problem to be quite basic, and not always representative of practical Multi-Objective Optimization problems. In an attempt to bring theory closer to practice, the authors propose an alternative, improved version of the DST problem, and prove that some of the properties that simplify the original DST problem no longer hold. The authors also provide a reference implementation and perform a comparison between their implementation, and other existing open-source implementations of the problem. Finally, the authors also provide a complete Pareto-front for their new DST problem.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-05
issn 2331-8422
language eng
recordid cdi_proquest_journals_2581963670
source Free E- Journals
subjects Deep sea environments
Multiple objective analysis
Pareto optimization
title A Review of the Deep Sea Treasure problem as a Multi-Objective Reinforcement Learning Benchmark
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T09%3A48%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=A%20Review%20of%20the%20Deep%20Sea%20Treasure%20problem%20as%20a%20Multi-Objective%20Reinforcement%20Learning%20Benchmark&rft.jtitle=arXiv.org&rft.au=Cassimon,%20Amber&rft.date=2024-05-21&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2581963670%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2581963670&rft_id=info:pmid/&rfr_iscdi=true