Microkelvin electronics on a pulse-tube cryostat with a gate Coulomb blockade thermometer
Access to lower temperatures has consistently enabled scientific breakthroughs. Pushing the limits of \emph{on-chip} temperatures deep into the microkelvin regime would open the door to unprecedented quantum coherence, novel quantum states of matter, and also the discovery of unexpected phenomena. A...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2021-10 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Samani, Mohammad Scheller, Christian P Yurttagül, Nikolai Grigoras, Kestutis Gunnarsson, David Omid Sharifi Sedeh Jones, Alexander T Prance, Jonathan R Haley, Richard P Prunnila, Mika Zumbühl, Dominik M |
description | Access to lower temperatures has consistently enabled scientific breakthroughs. Pushing the limits of \emph{on-chip} temperatures deep into the microkelvin regime would open the door to unprecedented quantum coherence, novel quantum states of matter, and also the discovery of unexpected phenomena. Adiabatic demagnetization is the workhorse of microkelvin cooling, requiring a dilution refrigerator precooling stage. Pulse-tube dilution refrigerators have grown enormously in popularity due to their vast experimental space and independence of helium, but their unavoidable vibrations are making microkelvin cooling very difficult. On-chip thermometry in this unexplored territory is also not a trivial task due to extreme sensitivity to noise. Here, we present a pulse-tube compatible microkelvin sample holder with on-board cooling and microwave filtering and introduce a new type of temperature sensor, the gate Coulomb blockade thermometer (gCBT), working deep into the microkelvin regime. Using on- and off-chip cooling, we demonstrate electronic temperatures as low as 224\(\pm\)7\(\mu\)K, remaining below 300\(\mu\)K for 27 hours, thus providing sufficient time for measurements. Finally, we give an outlook for cooling below 50\(\mu\)K for a new generation of microkelvin transport experiments. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2581962479</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2581962479</sourcerecordid><originalsourceid>FETCH-proquest_journals_25819624793</originalsourceid><addsrcrecordid>eNqNi7EKwjAUAIMgKNp_eOBcaNPW6iyKi5uLU0njU1PTPE1eFP_eDn6A0w13NxJTWRR5uiqlnIgkhC7LMrmsZVUVU3E6GO3pjvZlHKBFzZ6c0QHIgYJHtAFTji2C9h8KrBjehm-DuipG2FC01LfQWtJ3dUbgG_qeemT0czG-qGFPfpyJxW573OzTh6dnxMBNR9G7QTWyWuXrpSzrdfFf9QU1WULz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2581962479</pqid></control><display><type>article</type><title>Microkelvin electronics on a pulse-tube cryostat with a gate Coulomb blockade thermometer</title><source>Free E- Journals</source><creator>Samani, Mohammad ; Scheller, Christian P ; Yurttagül, Nikolai ; Grigoras, Kestutis ; Gunnarsson, David ; Omid Sharifi Sedeh ; Jones, Alexander T ; Prance, Jonathan R ; Haley, Richard P ; Prunnila, Mika ; Zumbühl, Dominik M</creator><creatorcontrib>Samani, Mohammad ; Scheller, Christian P ; Yurttagül, Nikolai ; Grigoras, Kestutis ; Gunnarsson, David ; Omid Sharifi Sedeh ; Jones, Alexander T ; Prance, Jonathan R ; Haley, Richard P ; Prunnila, Mika ; Zumbühl, Dominik M</creatorcontrib><description>Access to lower temperatures has consistently enabled scientific breakthroughs. Pushing the limits of \emph{on-chip} temperatures deep into the microkelvin regime would open the door to unprecedented quantum coherence, novel quantum states of matter, and also the discovery of unexpected phenomena. Adiabatic demagnetization is the workhorse of microkelvin cooling, requiring a dilution refrigerator precooling stage. Pulse-tube dilution refrigerators have grown enormously in popularity due to their vast experimental space and independence of helium, but their unavoidable vibrations are making microkelvin cooling very difficult. On-chip thermometry in this unexplored territory is also not a trivial task due to extreme sensitivity to noise. Here, we present a pulse-tube compatible microkelvin sample holder with on-board cooling and microwave filtering and introduce a new type of temperature sensor, the gate Coulomb blockade thermometer (gCBT), working deep into the microkelvin regime. Using on- and off-chip cooling, we demonstrate electronic temperatures as low as 224\(\pm\)7\(\mu\)K, remaining below 300\(\mu\)K for 27 hours, thus providing sufficient time for measurements. Finally, we give an outlook for cooling below 50\(\mu\)K for a new generation of microkelvin transport experiments.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Adiabatic demagnetizing ; Coherence ; Cooling ; Dilution ; Noise sensitivity ; Precooling ; Quantum phenomena ; Refrigerators ; Sample holders ; Temperature sensors</subject><ispartof>arXiv.org, 2021-10</ispartof><rights>2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Samani, Mohammad</creatorcontrib><creatorcontrib>Scheller, Christian P</creatorcontrib><creatorcontrib>Yurttagül, Nikolai</creatorcontrib><creatorcontrib>Grigoras, Kestutis</creatorcontrib><creatorcontrib>Gunnarsson, David</creatorcontrib><creatorcontrib>Omid Sharifi Sedeh</creatorcontrib><creatorcontrib>Jones, Alexander T</creatorcontrib><creatorcontrib>Prance, Jonathan R</creatorcontrib><creatorcontrib>Haley, Richard P</creatorcontrib><creatorcontrib>Prunnila, Mika</creatorcontrib><creatorcontrib>Zumbühl, Dominik M</creatorcontrib><title>Microkelvin electronics on a pulse-tube cryostat with a gate Coulomb blockade thermometer</title><title>arXiv.org</title><description>Access to lower temperatures has consistently enabled scientific breakthroughs. Pushing the limits of \emph{on-chip} temperatures deep into the microkelvin regime would open the door to unprecedented quantum coherence, novel quantum states of matter, and also the discovery of unexpected phenomena. Adiabatic demagnetization is the workhorse of microkelvin cooling, requiring a dilution refrigerator precooling stage. Pulse-tube dilution refrigerators have grown enormously in popularity due to their vast experimental space and independence of helium, but their unavoidable vibrations are making microkelvin cooling very difficult. On-chip thermometry in this unexplored territory is also not a trivial task due to extreme sensitivity to noise. Here, we present a pulse-tube compatible microkelvin sample holder with on-board cooling and microwave filtering and introduce a new type of temperature sensor, the gate Coulomb blockade thermometer (gCBT), working deep into the microkelvin regime. Using on- and off-chip cooling, we demonstrate electronic temperatures as low as 224\(\pm\)7\(\mu\)K, remaining below 300\(\mu\)K for 27 hours, thus providing sufficient time for measurements. Finally, we give an outlook for cooling below 50\(\mu\)K for a new generation of microkelvin transport experiments.</description><subject>Adiabatic demagnetizing</subject><subject>Coherence</subject><subject>Cooling</subject><subject>Dilution</subject><subject>Noise sensitivity</subject><subject>Precooling</subject><subject>Quantum phenomena</subject><subject>Refrigerators</subject><subject>Sample holders</subject><subject>Temperature sensors</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNi7EKwjAUAIMgKNp_eOBcaNPW6iyKi5uLU0njU1PTPE1eFP_eDn6A0w13NxJTWRR5uiqlnIgkhC7LMrmsZVUVU3E6GO3pjvZlHKBFzZ6c0QHIgYJHtAFTji2C9h8KrBjehm-DuipG2FC01LfQWtJ3dUbgG_qeemT0czG-qGFPfpyJxW573OzTh6dnxMBNR9G7QTWyWuXrpSzrdfFf9QU1WULz</recordid><startdate>20211012</startdate><enddate>20211012</enddate><creator>Samani, Mohammad</creator><creator>Scheller, Christian P</creator><creator>Yurttagül, Nikolai</creator><creator>Grigoras, Kestutis</creator><creator>Gunnarsson, David</creator><creator>Omid Sharifi Sedeh</creator><creator>Jones, Alexander T</creator><creator>Prance, Jonathan R</creator><creator>Haley, Richard P</creator><creator>Prunnila, Mika</creator><creator>Zumbühl, Dominik M</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20211012</creationdate><title>Microkelvin electronics on a pulse-tube cryostat with a gate Coulomb blockade thermometer</title><author>Samani, Mohammad ; Scheller, Christian P ; Yurttagül, Nikolai ; Grigoras, Kestutis ; Gunnarsson, David ; Omid Sharifi Sedeh ; Jones, Alexander T ; Prance, Jonathan R ; Haley, Richard P ; Prunnila, Mika ; Zumbühl, Dominik M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25819624793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adiabatic demagnetizing</topic><topic>Coherence</topic><topic>Cooling</topic><topic>Dilution</topic><topic>Noise sensitivity</topic><topic>Precooling</topic><topic>Quantum phenomena</topic><topic>Refrigerators</topic><topic>Sample holders</topic><topic>Temperature sensors</topic><toplevel>online_resources</toplevel><creatorcontrib>Samani, Mohammad</creatorcontrib><creatorcontrib>Scheller, Christian P</creatorcontrib><creatorcontrib>Yurttagül, Nikolai</creatorcontrib><creatorcontrib>Grigoras, Kestutis</creatorcontrib><creatorcontrib>Gunnarsson, David</creatorcontrib><creatorcontrib>Omid Sharifi Sedeh</creatorcontrib><creatorcontrib>Jones, Alexander T</creatorcontrib><creatorcontrib>Prance, Jonathan R</creatorcontrib><creatorcontrib>Haley, Richard P</creatorcontrib><creatorcontrib>Prunnila, Mika</creatorcontrib><creatorcontrib>Zumbühl, Dominik M</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Samani, Mohammad</au><au>Scheller, Christian P</au><au>Yurttagül, Nikolai</au><au>Grigoras, Kestutis</au><au>Gunnarsson, David</au><au>Omid Sharifi Sedeh</au><au>Jones, Alexander T</au><au>Prance, Jonathan R</au><au>Haley, Richard P</au><au>Prunnila, Mika</au><au>Zumbühl, Dominik M</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Microkelvin electronics on a pulse-tube cryostat with a gate Coulomb blockade thermometer</atitle><jtitle>arXiv.org</jtitle><date>2021-10-12</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>Access to lower temperatures has consistently enabled scientific breakthroughs. Pushing the limits of \emph{on-chip} temperatures deep into the microkelvin regime would open the door to unprecedented quantum coherence, novel quantum states of matter, and also the discovery of unexpected phenomena. Adiabatic demagnetization is the workhorse of microkelvin cooling, requiring a dilution refrigerator precooling stage. Pulse-tube dilution refrigerators have grown enormously in popularity due to their vast experimental space and independence of helium, but their unavoidable vibrations are making microkelvin cooling very difficult. On-chip thermometry in this unexplored territory is also not a trivial task due to extreme sensitivity to noise. Here, we present a pulse-tube compatible microkelvin sample holder with on-board cooling and microwave filtering and introduce a new type of temperature sensor, the gate Coulomb blockade thermometer (gCBT), working deep into the microkelvin regime. Using on- and off-chip cooling, we demonstrate electronic temperatures as low as 224\(\pm\)7\(\mu\)K, remaining below 300\(\mu\)K for 27 hours, thus providing sufficient time for measurements. Finally, we give an outlook for cooling below 50\(\mu\)K for a new generation of microkelvin transport experiments.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2021-10 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2581962479 |
source | Free E- Journals |
subjects | Adiabatic demagnetizing Coherence Cooling Dilution Noise sensitivity Precooling Quantum phenomena Refrigerators Sample holders Temperature sensors |
title | Microkelvin electronics on a pulse-tube cryostat with a gate Coulomb blockade thermometer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T19%3A23%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Microkelvin%20electronics%20on%20a%20pulse-tube%20cryostat%20with%20a%20gate%20Coulomb%20blockade%20thermometer&rft.jtitle=arXiv.org&rft.au=Samani,%20Mohammad&rft.date=2021-10-12&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2581962479%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2581962479&rft_id=info:pmid/&rfr_iscdi=true |