TiC–Cr3C2–WC–NiCr–Mo–C Cermet Plasma Coatings
Two bulk cermets TiC–WC–Cr 3 C 2 –(Ni80Cr20)–Mo–2.8C after liquid-phase sintering at 1400°C for 1 h were used to manufacture powders for plasma spraying of coatings. The cermets were fabricated at a limited time of mechanical alloying at the mixing stage. Plasma coatings were sprayed on a setup with...
Gespeichert in:
Veröffentlicht in: | Inorganic materials : applied research 2021-09, Vol.12 (5), p.1378-1385 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1385 |
---|---|
container_issue | 5 |
container_start_page | 1378 |
container_title | Inorganic materials : applied research |
container_volume | 12 |
creator | Kalita, V. I. Radyuk, A. A. Komlev, D. I. Mikhailova, A. B. Alpatov, A. V. Titov, D. D. |
description | Two bulk cermets TiC–WC–Cr
3
C
2
–(Ni80Cr20)–Mo–2.8C after liquid-phase sintering at 1400°C for 1 h were used to manufacture powders for plasma spraying of coatings. The cermets were fabricated at a limited time of mechanical alloying at the mixing stage. Plasma coatings were sprayed on a setup with a nozzle attached to a plasmatron for local protection of the sprayed particles from the air atmosphere. The WC–Cr
3
C
2
–C content in the cermets provided compensation for carbon losses at all stages of coating production and the formation of an annular zone, the volume of which determines the increase in the TiC content in the coatings by 20% and the formation of additional carbides in the matrix. The microhardness of cermet at an initial carbide content of 60% was 15.26–16.83 GPa with a load on the indenter of 200 G and 20.91–24.68 GPa with a load on the indenter of 20 G, and the difference was explained by a scale factor. The contribution of the microhardness of carbides to the microhardness of cermet with an initial carbide content of 60% was estimated according to the rule of mixtures, proceeding from their volume fraction and microhardness of cermet under a load on the indenter of 20 G. In the initial powder for spraying, this contribution is high, 33.19 GPa, close to the hardness of TiC. The contribution of microhardness of carbides in the coating is lower, 28.09 GPa. |
doi_str_mv | 10.1134/S2075113321050178 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2581837086</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2581837086</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-b97952ec2e6198b3fe9154012f98b575fc9d6f60bf13c43d32034048858c185a3</originalsourceid><addsrcrecordid>eNp1UMtOwzAQtBBIVKUfwC0S54DX9ibOEVm8pPKQKIKblbh2lapJip0euPEP_CFfgqMgOCD2Mju7M7PSEnIM9BSAi7NHRnOMHWdAkUIu98hkGKUA-LL_03N-SGYhrGksBCwETki-qNXn-4fyXLGIzwO5q5WPcNsNi0RZ39g-ediUoSkT1ZV93a7CETlw5SbY2TdOydPlxUJdp_P7qxt1Pk8Ny2SfVkVeILOG2QwKWXFnC0BBgbnIMEdnimXmMlo54EbwJWeUCyqkRGlAYsmn5GTM3frudWdDr9fdzrfxpGYoQfKcyiyqYFQZ34XgrdNbXzelf9NA9fAi_edF0cNGT4jadmX9b_L_pi9wb2g4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2581837086</pqid></control><display><type>article</type><title>TiC–Cr3C2–WC–NiCr–Mo–C Cermet Plasma Coatings</title><source>SpringerLink Journals - AutoHoldings</source><creator>Kalita, V. I. ; Radyuk, A. A. ; Komlev, D. I. ; Mikhailova, A. B. ; Alpatov, A. V. ; Titov, D. D.</creator><creatorcontrib>Kalita, V. I. ; Radyuk, A. A. ; Komlev, D. I. ; Mikhailova, A. B. ; Alpatov, A. V. ; Titov, D. D.</creatorcontrib><description>Two bulk cermets TiC–WC–Cr
3
C
2
–(Ni80Cr20)–Mo–2.8C after liquid-phase sintering at 1400°C for 1 h were used to manufacture powders for plasma spraying of coatings. The cermets were fabricated at a limited time of mechanical alloying at the mixing stage. Plasma coatings were sprayed on a setup with a nozzle attached to a plasmatron for local protection of the sprayed particles from the air atmosphere. The WC–Cr
3
C
2
–C content in the cermets provided compensation for carbon losses at all stages of coating production and the formation of an annular zone, the volume of which determines the increase in the TiC content in the coatings by 20% and the formation of additional carbides in the matrix. The microhardness of cermet at an initial carbide content of 60% was 15.26–16.83 GPa with a load on the indenter of 200 G and 20.91–24.68 GPa with a load on the indenter of 20 G, and the difference was explained by a scale factor. The contribution of the microhardness of carbides to the microhardness of cermet with an initial carbide content of 60% was estimated according to the rule of mixtures, proceeding from their volume fraction and microhardness of cermet under a load on the indenter of 20 G. In the initial powder for spraying, this contribution is high, 33.19 GPa, close to the hardness of TiC. The contribution of microhardness of carbides in the coating is lower, 28.09 GPa.</description><identifier>ISSN: 2075-1133</identifier><identifier>EISSN: 2075-115X</identifier><identifier>DOI: 10.1134/S2075113321050178</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Cermets ; Chemistry ; Chemistry and Materials Science ; Chromium carbide ; Coatings ; Industrial Chemistry/Chemical Engineering ; Inorganic Chemistry ; Liquid phase sintering ; Liquid phases ; Materials Science ; Mechanical alloying ; Microhardness ; New Technologies of Production and Processing of Materials ; Plasma spraying ; Powder spraying ; Sintering (powder metallurgy) ; Titanium carbide ; Tungsten carbide</subject><ispartof>Inorganic materials : applied research, 2021-09, Vol.12 (5), p.1378-1385</ispartof><rights>Pleiades Publishing, Ltd. 2021. ISSN 2075-1133, Inorganic Materials: Applied Research, 2021, Vol. 12, No. 5, pp. 1378–1385. © Pleiades Publishing, Ltd., 2021. Russian Text © The Author(s), 2021, published in Perspektivnye Materialy, 2021, No. 6, pp. 29–39.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-b97952ec2e6198b3fe9154012f98b575fc9d6f60bf13c43d32034048858c185a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S2075113321050178$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S2075113321050178$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Kalita, V. I.</creatorcontrib><creatorcontrib>Radyuk, A. A.</creatorcontrib><creatorcontrib>Komlev, D. I.</creatorcontrib><creatorcontrib>Mikhailova, A. B.</creatorcontrib><creatorcontrib>Alpatov, A. V.</creatorcontrib><creatorcontrib>Titov, D. D.</creatorcontrib><title>TiC–Cr3C2–WC–NiCr–Mo–C Cermet Plasma Coatings</title><title>Inorganic materials : applied research</title><addtitle>Inorg. Mater. Appl. Res</addtitle><description>Two bulk cermets TiC–WC–Cr
3
C
2
–(Ni80Cr20)–Mo–2.8C after liquid-phase sintering at 1400°C for 1 h were used to manufacture powders for plasma spraying of coatings. The cermets were fabricated at a limited time of mechanical alloying at the mixing stage. Plasma coatings were sprayed on a setup with a nozzle attached to a plasmatron for local protection of the sprayed particles from the air atmosphere. The WC–Cr
3
C
2
–C content in the cermets provided compensation for carbon losses at all stages of coating production and the formation of an annular zone, the volume of which determines the increase in the TiC content in the coatings by 20% and the formation of additional carbides in the matrix. The microhardness of cermet at an initial carbide content of 60% was 15.26–16.83 GPa with a load on the indenter of 200 G and 20.91–24.68 GPa with a load on the indenter of 20 G, and the difference was explained by a scale factor. The contribution of the microhardness of carbides to the microhardness of cermet with an initial carbide content of 60% was estimated according to the rule of mixtures, proceeding from their volume fraction and microhardness of cermet under a load on the indenter of 20 G. In the initial powder for spraying, this contribution is high, 33.19 GPa, close to the hardness of TiC. The contribution of microhardness of carbides in the coating is lower, 28.09 GPa.</description><subject>Cermets</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chromium carbide</subject><subject>Coatings</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Inorganic Chemistry</subject><subject>Liquid phase sintering</subject><subject>Liquid phases</subject><subject>Materials Science</subject><subject>Mechanical alloying</subject><subject>Microhardness</subject><subject>New Technologies of Production and Processing of Materials</subject><subject>Plasma spraying</subject><subject>Powder spraying</subject><subject>Sintering (powder metallurgy)</subject><subject>Titanium carbide</subject><subject>Tungsten carbide</subject><issn>2075-1133</issn><issn>2075-115X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1UMtOwzAQtBBIVKUfwC0S54DX9ibOEVm8pPKQKIKblbh2lapJip0euPEP_CFfgqMgOCD2Mju7M7PSEnIM9BSAi7NHRnOMHWdAkUIu98hkGKUA-LL_03N-SGYhrGksBCwETki-qNXn-4fyXLGIzwO5q5WPcNsNi0RZ39g-ediUoSkT1ZV93a7CETlw5SbY2TdOydPlxUJdp_P7qxt1Pk8Ny2SfVkVeILOG2QwKWXFnC0BBgbnIMEdnimXmMlo54EbwJWeUCyqkRGlAYsmn5GTM3frudWdDr9fdzrfxpGYoQfKcyiyqYFQZ34XgrdNbXzelf9NA9fAi_edF0cNGT4jadmX9b_L_pi9wb2g4</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Kalita, V. I.</creator><creator>Radyuk, A. A.</creator><creator>Komlev, D. I.</creator><creator>Mikhailova, A. B.</creator><creator>Alpatov, A. V.</creator><creator>Titov, D. D.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210901</creationdate><title>TiC–Cr3C2–WC–NiCr–Mo–C Cermet Plasma Coatings</title><author>Kalita, V. I. ; Radyuk, A. A. ; Komlev, D. I. ; Mikhailova, A. B. ; Alpatov, A. V. ; Titov, D. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-b97952ec2e6198b3fe9154012f98b575fc9d6f60bf13c43d32034048858c185a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Cermets</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chromium carbide</topic><topic>Coatings</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Inorganic Chemistry</topic><topic>Liquid phase sintering</topic><topic>Liquid phases</topic><topic>Materials Science</topic><topic>Mechanical alloying</topic><topic>Microhardness</topic><topic>New Technologies of Production and Processing of Materials</topic><topic>Plasma spraying</topic><topic>Powder spraying</topic><topic>Sintering (powder metallurgy)</topic><topic>Titanium carbide</topic><topic>Tungsten carbide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kalita, V. I.</creatorcontrib><creatorcontrib>Radyuk, A. A.</creatorcontrib><creatorcontrib>Komlev, D. I.</creatorcontrib><creatorcontrib>Mikhailova, A. B.</creatorcontrib><creatorcontrib>Alpatov, A. V.</creatorcontrib><creatorcontrib>Titov, D. D.</creatorcontrib><collection>CrossRef</collection><jtitle>Inorganic materials : applied research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kalita, V. I.</au><au>Radyuk, A. A.</au><au>Komlev, D. I.</au><au>Mikhailova, A. B.</au><au>Alpatov, A. V.</au><au>Titov, D. D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TiC–Cr3C2–WC–NiCr–Mo–C Cermet Plasma Coatings</atitle><jtitle>Inorganic materials : applied research</jtitle><stitle>Inorg. Mater. Appl. Res</stitle><date>2021-09-01</date><risdate>2021</risdate><volume>12</volume><issue>5</issue><spage>1378</spage><epage>1385</epage><pages>1378-1385</pages><issn>2075-1133</issn><eissn>2075-115X</eissn><abstract>Two bulk cermets TiC–WC–Cr
3
C
2
–(Ni80Cr20)–Mo–2.8C after liquid-phase sintering at 1400°C for 1 h were used to manufacture powders for plasma spraying of coatings. The cermets were fabricated at a limited time of mechanical alloying at the mixing stage. Plasma coatings were sprayed on a setup with a nozzle attached to a plasmatron for local protection of the sprayed particles from the air atmosphere. The WC–Cr
3
C
2
–C content in the cermets provided compensation for carbon losses at all stages of coating production and the formation of an annular zone, the volume of which determines the increase in the TiC content in the coatings by 20% and the formation of additional carbides in the matrix. The microhardness of cermet at an initial carbide content of 60% was 15.26–16.83 GPa with a load on the indenter of 200 G and 20.91–24.68 GPa with a load on the indenter of 20 G, and the difference was explained by a scale factor. The contribution of the microhardness of carbides to the microhardness of cermet with an initial carbide content of 60% was estimated according to the rule of mixtures, proceeding from their volume fraction and microhardness of cermet under a load on the indenter of 20 G. In the initial powder for spraying, this contribution is high, 33.19 GPa, close to the hardness of TiC. The contribution of microhardness of carbides in the coating is lower, 28.09 GPa.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S2075113321050178</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2075-1133 |
ispartof | Inorganic materials : applied research, 2021-09, Vol.12 (5), p.1378-1385 |
issn | 2075-1133 2075-115X |
language | eng |
recordid | cdi_proquest_journals_2581837086 |
source | SpringerLink Journals - AutoHoldings |
subjects | Cermets Chemistry Chemistry and Materials Science Chromium carbide Coatings Industrial Chemistry/Chemical Engineering Inorganic Chemistry Liquid phase sintering Liquid phases Materials Science Mechanical alloying Microhardness New Technologies of Production and Processing of Materials Plasma spraying Powder spraying Sintering (powder metallurgy) Titanium carbide Tungsten carbide |
title | TiC–Cr3C2–WC–NiCr–Mo–C Cermet Plasma Coatings |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T10%3A30%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TiC%E2%80%93Cr3C2%E2%80%93WC%E2%80%93NiCr%E2%80%93Mo%E2%80%93C%20Cermet%20Plasma%20Coatings&rft.jtitle=Inorganic%20materials%20:%20applied%20research&rft.au=Kalita,%20V.%20I.&rft.date=2021-09-01&rft.volume=12&rft.issue=5&rft.spage=1378&rft.epage=1385&rft.pages=1378-1385&rft.issn=2075-1133&rft.eissn=2075-115X&rft_id=info:doi/10.1134/S2075113321050178&rft_dat=%3Cproquest_cross%3E2581837086%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2581837086&rft_id=info:pmid/&rfr_iscdi=true |