TiC–Cr3C2–WC–NiCr–Mo–C Cermet Plasma Coatings

Two bulk cermets TiC–WC–Cr 3 C 2 –(Ni80Cr20)–Mo–2.8C after liquid-phase sintering at 1400°C for 1 h were used to manufacture powders for plasma spraying of coatings. The cermets were fabricated at a limited time of mechanical alloying at the mixing stage. Plasma coatings were sprayed on a setup with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Inorganic materials : applied research 2021-09, Vol.12 (5), p.1378-1385
Hauptverfasser: Kalita, V. I., Radyuk, A. A., Komlev, D. I., Mikhailova, A. B., Alpatov, A. V., Titov, D. D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1385
container_issue 5
container_start_page 1378
container_title Inorganic materials : applied research
container_volume 12
creator Kalita, V. I.
Radyuk, A. A.
Komlev, D. I.
Mikhailova, A. B.
Alpatov, A. V.
Titov, D. D.
description Two bulk cermets TiC–WC–Cr 3 C 2 –(Ni80Cr20)–Mo–2.8C after liquid-phase sintering at 1400°C for 1 h were used to manufacture powders for plasma spraying of coatings. The cermets were fabricated at a limited time of mechanical alloying at the mixing stage. Plasma coatings were sprayed on a setup with a nozzle attached to a plasmatron for local protection of the sprayed particles from the air atmosphere. The WC–Cr 3 C 2 –C content in the cermets provided compensation for carbon losses at all stages of coating production and the formation of an annular zone, the volume of which determines the increase in the TiC content in the coatings by 20% and the formation of additional carbides in the matrix. The microhardness of cermet at an initial carbide content of 60% was 15.26–16.83 GPa with a load on the indenter of 200 G and 20.91–24.68 GPa with a load on the indenter of 20 G, and the difference was explained by a scale factor. The contribution of the microhardness of carbides to the microhardness of cermet with an initial carbide content of 60% was estimated according to the rule of mixtures, proceeding from their volume fraction and microhardness of cermet under a load on the indenter of 20 G. In the initial powder for spraying, this contribution is high, 33.19 GPa, close to the hardness of TiC. The contribution of microhardness of carbides in the coating is lower, 28.09 GPa.
doi_str_mv 10.1134/S2075113321050178
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2581837086</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2581837086</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-b97952ec2e6198b3fe9154012f98b575fc9d6f60bf13c43d32034048858c185a3</originalsourceid><addsrcrecordid>eNp1UMtOwzAQtBBIVKUfwC0S54DX9ibOEVm8pPKQKIKblbh2lapJip0euPEP_CFfgqMgOCD2Mju7M7PSEnIM9BSAi7NHRnOMHWdAkUIu98hkGKUA-LL_03N-SGYhrGksBCwETki-qNXn-4fyXLGIzwO5q5WPcNsNi0RZ39g-ediUoSkT1ZV93a7CETlw5SbY2TdOydPlxUJdp_P7qxt1Pk8Ny2SfVkVeILOG2QwKWXFnC0BBgbnIMEdnimXmMlo54EbwJWeUCyqkRGlAYsmn5GTM3frudWdDr9fdzrfxpGYoQfKcyiyqYFQZ34XgrdNbXzelf9NA9fAi_edF0cNGT4jadmX9b_L_pi9wb2g4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2581837086</pqid></control><display><type>article</type><title>TiC–Cr3C2–WC–NiCr–Mo–C Cermet Plasma Coatings</title><source>SpringerLink Journals - AutoHoldings</source><creator>Kalita, V. I. ; Radyuk, A. A. ; Komlev, D. I. ; Mikhailova, A. B. ; Alpatov, A. V. ; Titov, D. D.</creator><creatorcontrib>Kalita, V. I. ; Radyuk, A. A. ; Komlev, D. I. ; Mikhailova, A. B. ; Alpatov, A. V. ; Titov, D. D.</creatorcontrib><description>Two bulk cermets TiC–WC–Cr 3 C 2 –(Ni80Cr20)–Mo–2.8C after liquid-phase sintering at 1400°C for 1 h were used to manufacture powders for plasma spraying of coatings. The cermets were fabricated at a limited time of mechanical alloying at the mixing stage. Plasma coatings were sprayed on a setup with a nozzle attached to a plasmatron for local protection of the sprayed particles from the air atmosphere. The WC–Cr 3 C 2 –C content in the cermets provided compensation for carbon losses at all stages of coating production and the formation of an annular zone, the volume of which determines the increase in the TiC content in the coatings by 20% and the formation of additional carbides in the matrix. The microhardness of cermet at an initial carbide content of 60% was 15.26–16.83 GPa with a load on the indenter of 200 G and 20.91–24.68 GPa with a load on the indenter of 20 G, and the difference was explained by a scale factor. The contribution of the microhardness of carbides to the microhardness of cermet with an initial carbide content of 60% was estimated according to the rule of mixtures, proceeding from their volume fraction and microhardness of cermet under a load on the indenter of 20 G. In the initial powder for spraying, this contribution is high, 33.19 GPa, close to the hardness of TiC. The contribution of microhardness of carbides in the coating is lower, 28.09 GPa.</description><identifier>ISSN: 2075-1133</identifier><identifier>EISSN: 2075-115X</identifier><identifier>DOI: 10.1134/S2075113321050178</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Cermets ; Chemistry ; Chemistry and Materials Science ; Chromium carbide ; Coatings ; Industrial Chemistry/Chemical Engineering ; Inorganic Chemistry ; Liquid phase sintering ; Liquid phases ; Materials Science ; Mechanical alloying ; Microhardness ; New Technologies of Production and Processing of Materials ; Plasma spraying ; Powder spraying ; Sintering (powder metallurgy) ; Titanium carbide ; Tungsten carbide</subject><ispartof>Inorganic materials : applied research, 2021-09, Vol.12 (5), p.1378-1385</ispartof><rights>Pleiades Publishing, Ltd. 2021. ISSN 2075-1133, Inorganic Materials: Applied Research, 2021, Vol. 12, No. 5, pp. 1378–1385. © Pleiades Publishing, Ltd., 2021. Russian Text © The Author(s), 2021, published in Perspektivnye Materialy, 2021, No. 6, pp. 29–39.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-b97952ec2e6198b3fe9154012f98b575fc9d6f60bf13c43d32034048858c185a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S2075113321050178$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S2075113321050178$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Kalita, V. I.</creatorcontrib><creatorcontrib>Radyuk, A. A.</creatorcontrib><creatorcontrib>Komlev, D. I.</creatorcontrib><creatorcontrib>Mikhailova, A. B.</creatorcontrib><creatorcontrib>Alpatov, A. V.</creatorcontrib><creatorcontrib>Titov, D. D.</creatorcontrib><title>TiC–Cr3C2–WC–NiCr–Mo–C Cermet Plasma Coatings</title><title>Inorganic materials : applied research</title><addtitle>Inorg. Mater. Appl. Res</addtitle><description>Two bulk cermets TiC–WC–Cr 3 C 2 –(Ni80Cr20)–Mo–2.8C after liquid-phase sintering at 1400°C for 1 h were used to manufacture powders for plasma spraying of coatings. The cermets were fabricated at a limited time of mechanical alloying at the mixing stage. Plasma coatings were sprayed on a setup with a nozzle attached to a plasmatron for local protection of the sprayed particles from the air atmosphere. The WC–Cr 3 C 2 –C content in the cermets provided compensation for carbon losses at all stages of coating production and the formation of an annular zone, the volume of which determines the increase in the TiC content in the coatings by 20% and the formation of additional carbides in the matrix. The microhardness of cermet at an initial carbide content of 60% was 15.26–16.83 GPa with a load on the indenter of 200 G and 20.91–24.68 GPa with a load on the indenter of 20 G, and the difference was explained by a scale factor. The contribution of the microhardness of carbides to the microhardness of cermet with an initial carbide content of 60% was estimated according to the rule of mixtures, proceeding from their volume fraction and microhardness of cermet under a load on the indenter of 20 G. In the initial powder for spraying, this contribution is high, 33.19 GPa, close to the hardness of TiC. The contribution of microhardness of carbides in the coating is lower, 28.09 GPa.</description><subject>Cermets</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chromium carbide</subject><subject>Coatings</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Inorganic Chemistry</subject><subject>Liquid phase sintering</subject><subject>Liquid phases</subject><subject>Materials Science</subject><subject>Mechanical alloying</subject><subject>Microhardness</subject><subject>New Technologies of Production and Processing of Materials</subject><subject>Plasma spraying</subject><subject>Powder spraying</subject><subject>Sintering (powder metallurgy)</subject><subject>Titanium carbide</subject><subject>Tungsten carbide</subject><issn>2075-1133</issn><issn>2075-115X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1UMtOwzAQtBBIVKUfwC0S54DX9ibOEVm8pPKQKIKblbh2lapJip0euPEP_CFfgqMgOCD2Mju7M7PSEnIM9BSAi7NHRnOMHWdAkUIu98hkGKUA-LL_03N-SGYhrGksBCwETki-qNXn-4fyXLGIzwO5q5WPcNsNi0RZ39g-ediUoSkT1ZV93a7CETlw5SbY2TdOydPlxUJdp_P7qxt1Pk8Ny2SfVkVeILOG2QwKWXFnC0BBgbnIMEdnimXmMlo54EbwJWeUCyqkRGlAYsmn5GTM3frudWdDr9fdzrfxpGYoQfKcyiyqYFQZ34XgrdNbXzelf9NA9fAi_edF0cNGT4jadmX9b_L_pi9wb2g4</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Kalita, V. I.</creator><creator>Radyuk, A. A.</creator><creator>Komlev, D. I.</creator><creator>Mikhailova, A. B.</creator><creator>Alpatov, A. V.</creator><creator>Titov, D. D.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210901</creationdate><title>TiC–Cr3C2–WC–NiCr–Mo–C Cermet Plasma Coatings</title><author>Kalita, V. I. ; Radyuk, A. A. ; Komlev, D. I. ; Mikhailova, A. B. ; Alpatov, A. V. ; Titov, D. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-b97952ec2e6198b3fe9154012f98b575fc9d6f60bf13c43d32034048858c185a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Cermets</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chromium carbide</topic><topic>Coatings</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Inorganic Chemistry</topic><topic>Liquid phase sintering</topic><topic>Liquid phases</topic><topic>Materials Science</topic><topic>Mechanical alloying</topic><topic>Microhardness</topic><topic>New Technologies of Production and Processing of Materials</topic><topic>Plasma spraying</topic><topic>Powder spraying</topic><topic>Sintering (powder metallurgy)</topic><topic>Titanium carbide</topic><topic>Tungsten carbide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kalita, V. I.</creatorcontrib><creatorcontrib>Radyuk, A. A.</creatorcontrib><creatorcontrib>Komlev, D. I.</creatorcontrib><creatorcontrib>Mikhailova, A. B.</creatorcontrib><creatorcontrib>Alpatov, A. V.</creatorcontrib><creatorcontrib>Titov, D. D.</creatorcontrib><collection>CrossRef</collection><jtitle>Inorganic materials : applied research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kalita, V. I.</au><au>Radyuk, A. A.</au><au>Komlev, D. I.</au><au>Mikhailova, A. B.</au><au>Alpatov, A. V.</au><au>Titov, D. D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TiC–Cr3C2–WC–NiCr–Mo–C Cermet Plasma Coatings</atitle><jtitle>Inorganic materials : applied research</jtitle><stitle>Inorg. Mater. Appl. Res</stitle><date>2021-09-01</date><risdate>2021</risdate><volume>12</volume><issue>5</issue><spage>1378</spage><epage>1385</epage><pages>1378-1385</pages><issn>2075-1133</issn><eissn>2075-115X</eissn><abstract>Two bulk cermets TiC–WC–Cr 3 C 2 –(Ni80Cr20)–Mo–2.8C after liquid-phase sintering at 1400°C for 1 h were used to manufacture powders for plasma spraying of coatings. The cermets were fabricated at a limited time of mechanical alloying at the mixing stage. Plasma coatings were sprayed on a setup with a nozzle attached to a plasmatron for local protection of the sprayed particles from the air atmosphere. The WC–Cr 3 C 2 –C content in the cermets provided compensation for carbon losses at all stages of coating production and the formation of an annular zone, the volume of which determines the increase in the TiC content in the coatings by 20% and the formation of additional carbides in the matrix. The microhardness of cermet at an initial carbide content of 60% was 15.26–16.83 GPa with a load on the indenter of 200 G and 20.91–24.68 GPa with a load on the indenter of 20 G, and the difference was explained by a scale factor. The contribution of the microhardness of carbides to the microhardness of cermet with an initial carbide content of 60% was estimated according to the rule of mixtures, proceeding from their volume fraction and microhardness of cermet under a load on the indenter of 20 G. In the initial powder for spraying, this contribution is high, 33.19 GPa, close to the hardness of TiC. The contribution of microhardness of carbides in the coating is lower, 28.09 GPa.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S2075113321050178</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2075-1133
ispartof Inorganic materials : applied research, 2021-09, Vol.12 (5), p.1378-1385
issn 2075-1133
2075-115X
language eng
recordid cdi_proquest_journals_2581837086
source SpringerLink Journals - AutoHoldings
subjects Cermets
Chemistry
Chemistry and Materials Science
Chromium carbide
Coatings
Industrial Chemistry/Chemical Engineering
Inorganic Chemistry
Liquid phase sintering
Liquid phases
Materials Science
Mechanical alloying
Microhardness
New Technologies of Production and Processing of Materials
Plasma spraying
Powder spraying
Sintering (powder metallurgy)
Titanium carbide
Tungsten carbide
title TiC–Cr3C2–WC–NiCr–Mo–C Cermet Plasma Coatings
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T10%3A30%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TiC%E2%80%93Cr3C2%E2%80%93WC%E2%80%93NiCr%E2%80%93Mo%E2%80%93C%20Cermet%20Plasma%20Coatings&rft.jtitle=Inorganic%20materials%20:%20applied%20research&rft.au=Kalita,%20V.%20I.&rft.date=2021-09-01&rft.volume=12&rft.issue=5&rft.spage=1378&rft.epage=1385&rft.pages=1378-1385&rft.issn=2075-1133&rft.eissn=2075-115X&rft_id=info:doi/10.1134/S2075113321050178&rft_dat=%3Cproquest_cross%3E2581837086%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2581837086&rft_id=info:pmid/&rfr_iscdi=true