Engineering Synergistic Edge‐N Dipole in Metal‐Free Carbon Nanoflakes toward Intensified Oxygen Reduction Electrocatalysis

Nitrogen doping represents an effective way to induce charge/spin polarization in nanocarbons for promoting oxygen reduction reaction (ORR) activity. However, it remains elusive to define the dominant active sites with respect to two critical N‐configurations of pyridinic‐N and graphitic‐N. Herein,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2021-10, Vol.31 (42), p.n/a
Hauptverfasser: Zhang, Linjie, Gu, Tengteng, Lu, KangLong, Zhou, Liujiang, Li, Dong‐Sheng, Wang, Ruihu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 42
container_start_page
container_title Advanced functional materials
container_volume 31
creator Zhang, Linjie
Gu, Tengteng
Lu, KangLong
Zhou, Liujiang
Li, Dong‐Sheng
Wang, Ruihu
description Nitrogen doping represents an effective way to induce charge/spin polarization in nanocarbons for promoting oxygen reduction reaction (ORR) activity. However, it remains elusive to define the dominant active sites with respect to two critical N‐configurations of pyridinic‐N and graphitic‐N. Herein, a tandem catalytic graphitization and nitrogen modification strategy for the synthesis of metal‐free nitrogen‐doped carbon nanoflakes (NCF) featuring the edge‐suffused and graphite‐analogous structure is presented. NCF exhibits superb Pt‐like ORR activity (0.85 V for half‐wave potential and 5.9 mA cm−2 for diffusion‐limited current density) but much stronger robustness in the alkaline medium. The experimental and theoretical studies suggest the key role of graphitic‐N in ORR. Furthermore, it unveils that the high activity of NCF should be traced to a synergistic polarization of the edge‐type pyridinic‐N/graphitic‐N dipole spaced by one edge peak carbon atom on the armchair edges. This study sheds light on the understanding of ORR active sites in the nitrogen‐doped nanocarbons for ORR. Edge‐suffused and graphite‐analogous nitrogen‐doped carbon nanoflakes (NCF) are fabricated using a tandem catalytic graphitization and nitrogen modification strategy. The key electronic synergism of the edge‐type pyridinic‐N/graphitic‐N dipole is identified to empower NCF with superior electrocatalytic oxygen reduction performances.
doi_str_mv 10.1002/adfm.202103187
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2581774782</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2581774782</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3177-42924b5f64de2d69f895ec494f2582af55b2a4a02c7a271fb9207075ad8e3feb3</originalsourceid><addsrcrecordid>eNqFkEtLAzEUhYMoWKtb1wHXU5PMe1naqRb6AB_gLmRmbobUaaYmU-psxJ_gb_SXmFKpS1f3cvnOOZeD0DUlA0oIuxWlXA8YYZT4NIlPUI9GNPJ8wpLT405fztGFtStCaBz7QQ99ZLpSGsAoXeHHToOplG1VgbOygu_PrwUeq01TA1Yaz6EVtbtNDAAeCZM3Gi-EbmQtXsHittkJU-KpbkFbJRWUePneVaDxA5TbolUOz2ooWtMUwjl1VtlLdCZFbeHqd_bR8yR7Gt17s-XddDSceYXvHvUClrIgD2UUlMDKKJVJGkIRpIFkYcKEDMOciUAQVsSCxVTmKSMxiUNRJuBLyP0-ujn4bkzztgXb8lWzNdpFcufgIoI4YY4aHKjCNNYakHxj1FqYjlPC9x3zfcf82LETpAfBTtXQ_UPz4Xgy_9P-AOvmhAU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2581774782</pqid></control><display><type>article</type><title>Engineering Synergistic Edge‐N Dipole in Metal‐Free Carbon Nanoflakes toward Intensified Oxygen Reduction Electrocatalysis</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Zhang, Linjie ; Gu, Tengteng ; Lu, KangLong ; Zhou, Liujiang ; Li, Dong‐Sheng ; Wang, Ruihu</creator><creatorcontrib>Zhang, Linjie ; Gu, Tengteng ; Lu, KangLong ; Zhou, Liujiang ; Li, Dong‐Sheng ; Wang, Ruihu</creatorcontrib><description>Nitrogen doping represents an effective way to induce charge/spin polarization in nanocarbons for promoting oxygen reduction reaction (ORR) activity. However, it remains elusive to define the dominant active sites with respect to two critical N‐configurations of pyridinic‐N and graphitic‐N. Herein, a tandem catalytic graphitization and nitrogen modification strategy for the synthesis of metal‐free nitrogen‐doped carbon nanoflakes (NCF) featuring the edge‐suffused and graphite‐analogous structure is presented. NCF exhibits superb Pt‐like ORR activity (0.85 V for half‐wave potential and 5.9 mA cm−2 for diffusion‐limited current density) but much stronger robustness in the alkaline medium. The experimental and theoretical studies suggest the key role of graphitic‐N in ORR. Furthermore, it unveils that the high activity of NCF should be traced to a synergistic polarization of the edge‐type pyridinic‐N/graphitic‐N dipole spaced by one edge peak carbon atom on the armchair edges. This study sheds light on the understanding of ORR active sites in the nitrogen‐doped nanocarbons for ORR. Edge‐suffused and graphite‐analogous nitrogen‐doped carbon nanoflakes (NCF) are fabricated using a tandem catalytic graphitization and nitrogen modification strategy. The key electronic synergism of the edge‐type pyridinic‐N/graphitic‐N dipole is identified to empower NCF with superior electrocatalytic oxygen reduction performances.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202103187</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Carbon ; carbon nanomaterials ; Dipoles ; electrocatalysis ; Graphitization ; Materials science ; metal‐organic frameworks ; Nitrogen ; oxygen reduction reaction ; Oxygen reduction reactions ; Polarization (spin alignment) ; zinc‐air batteries</subject><ispartof>Advanced functional materials, 2021-10, Vol.31 (42), p.n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3177-42924b5f64de2d69f895ec494f2582af55b2a4a02c7a271fb9207075ad8e3feb3</citedby><cites>FETCH-LOGICAL-c3177-42924b5f64de2d69f895ec494f2582af55b2a4a02c7a271fb9207075ad8e3feb3</cites><orcidid>0000-0002-6209-9822</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202103187$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202103187$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Zhang, Linjie</creatorcontrib><creatorcontrib>Gu, Tengteng</creatorcontrib><creatorcontrib>Lu, KangLong</creatorcontrib><creatorcontrib>Zhou, Liujiang</creatorcontrib><creatorcontrib>Li, Dong‐Sheng</creatorcontrib><creatorcontrib>Wang, Ruihu</creatorcontrib><title>Engineering Synergistic Edge‐N Dipole in Metal‐Free Carbon Nanoflakes toward Intensified Oxygen Reduction Electrocatalysis</title><title>Advanced functional materials</title><description>Nitrogen doping represents an effective way to induce charge/spin polarization in nanocarbons for promoting oxygen reduction reaction (ORR) activity. However, it remains elusive to define the dominant active sites with respect to two critical N‐configurations of pyridinic‐N and graphitic‐N. Herein, a tandem catalytic graphitization and nitrogen modification strategy for the synthesis of metal‐free nitrogen‐doped carbon nanoflakes (NCF) featuring the edge‐suffused and graphite‐analogous structure is presented. NCF exhibits superb Pt‐like ORR activity (0.85 V for half‐wave potential and 5.9 mA cm−2 for diffusion‐limited current density) but much stronger robustness in the alkaline medium. The experimental and theoretical studies suggest the key role of graphitic‐N in ORR. Furthermore, it unveils that the high activity of NCF should be traced to a synergistic polarization of the edge‐type pyridinic‐N/graphitic‐N dipole spaced by one edge peak carbon atom on the armchair edges. This study sheds light on the understanding of ORR active sites in the nitrogen‐doped nanocarbons for ORR. Edge‐suffused and graphite‐analogous nitrogen‐doped carbon nanoflakes (NCF) are fabricated using a tandem catalytic graphitization and nitrogen modification strategy. The key electronic synergism of the edge‐type pyridinic‐N/graphitic‐N dipole is identified to empower NCF with superior electrocatalytic oxygen reduction performances.</description><subject>Carbon</subject><subject>carbon nanomaterials</subject><subject>Dipoles</subject><subject>electrocatalysis</subject><subject>Graphitization</subject><subject>Materials science</subject><subject>metal‐organic frameworks</subject><subject>Nitrogen</subject><subject>oxygen reduction reaction</subject><subject>Oxygen reduction reactions</subject><subject>Polarization (spin alignment)</subject><subject>zinc‐air batteries</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLAzEUhYMoWKtb1wHXU5PMe1naqRb6AB_gLmRmbobUaaYmU-psxJ_gb_SXmFKpS1f3cvnOOZeD0DUlA0oIuxWlXA8YYZT4NIlPUI9GNPJ8wpLT405fztGFtStCaBz7QQ99ZLpSGsAoXeHHToOplG1VgbOygu_PrwUeq01TA1Yaz6EVtbtNDAAeCZM3Gi-EbmQtXsHittkJU-KpbkFbJRWUePneVaDxA5TbolUOz2ooWtMUwjl1VtlLdCZFbeHqd_bR8yR7Gt17s-XddDSceYXvHvUClrIgD2UUlMDKKJVJGkIRpIFkYcKEDMOciUAQVsSCxVTmKSMxiUNRJuBLyP0-ujn4bkzztgXb8lWzNdpFcufgIoI4YY4aHKjCNNYakHxj1FqYjlPC9x3zfcf82LETpAfBTtXQ_UPz4Xgy_9P-AOvmhAU</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Zhang, Linjie</creator><creator>Gu, Tengteng</creator><creator>Lu, KangLong</creator><creator>Zhou, Liujiang</creator><creator>Li, Dong‐Sheng</creator><creator>Wang, Ruihu</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6209-9822</orcidid></search><sort><creationdate>20211001</creationdate><title>Engineering Synergistic Edge‐N Dipole in Metal‐Free Carbon Nanoflakes toward Intensified Oxygen Reduction Electrocatalysis</title><author>Zhang, Linjie ; Gu, Tengteng ; Lu, KangLong ; Zhou, Liujiang ; Li, Dong‐Sheng ; Wang, Ruihu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3177-42924b5f64de2d69f895ec494f2582af55b2a4a02c7a271fb9207075ad8e3feb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Carbon</topic><topic>carbon nanomaterials</topic><topic>Dipoles</topic><topic>electrocatalysis</topic><topic>Graphitization</topic><topic>Materials science</topic><topic>metal‐organic frameworks</topic><topic>Nitrogen</topic><topic>oxygen reduction reaction</topic><topic>Oxygen reduction reactions</topic><topic>Polarization (spin alignment)</topic><topic>zinc‐air batteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Linjie</creatorcontrib><creatorcontrib>Gu, Tengteng</creatorcontrib><creatorcontrib>Lu, KangLong</creatorcontrib><creatorcontrib>Zhou, Liujiang</creatorcontrib><creatorcontrib>Li, Dong‐Sheng</creatorcontrib><creatorcontrib>Wang, Ruihu</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Linjie</au><au>Gu, Tengteng</au><au>Lu, KangLong</au><au>Zhou, Liujiang</au><au>Li, Dong‐Sheng</au><au>Wang, Ruihu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineering Synergistic Edge‐N Dipole in Metal‐Free Carbon Nanoflakes toward Intensified Oxygen Reduction Electrocatalysis</atitle><jtitle>Advanced functional materials</jtitle><date>2021-10-01</date><risdate>2021</risdate><volume>31</volume><issue>42</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Nitrogen doping represents an effective way to induce charge/spin polarization in nanocarbons for promoting oxygen reduction reaction (ORR) activity. However, it remains elusive to define the dominant active sites with respect to two critical N‐configurations of pyridinic‐N and graphitic‐N. Herein, a tandem catalytic graphitization and nitrogen modification strategy for the synthesis of metal‐free nitrogen‐doped carbon nanoflakes (NCF) featuring the edge‐suffused and graphite‐analogous structure is presented. NCF exhibits superb Pt‐like ORR activity (0.85 V for half‐wave potential and 5.9 mA cm−2 for diffusion‐limited current density) but much stronger robustness in the alkaline medium. The experimental and theoretical studies suggest the key role of graphitic‐N in ORR. Furthermore, it unveils that the high activity of NCF should be traced to a synergistic polarization of the edge‐type pyridinic‐N/graphitic‐N dipole spaced by one edge peak carbon atom on the armchair edges. This study sheds light on the understanding of ORR active sites in the nitrogen‐doped nanocarbons for ORR. Edge‐suffused and graphite‐analogous nitrogen‐doped carbon nanoflakes (NCF) are fabricated using a tandem catalytic graphitization and nitrogen modification strategy. The key electronic synergism of the edge‐type pyridinic‐N/graphitic‐N dipole is identified to empower NCF with superior electrocatalytic oxygen reduction performances.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202103187</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-6209-9822</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2021-10, Vol.31 (42), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2581774782
source Wiley Online Library Journals Frontfile Complete
subjects Carbon
carbon nanomaterials
Dipoles
electrocatalysis
Graphitization
Materials science
metal‐organic frameworks
Nitrogen
oxygen reduction reaction
Oxygen reduction reactions
Polarization (spin alignment)
zinc‐air batteries
title Engineering Synergistic Edge‐N Dipole in Metal‐Free Carbon Nanoflakes toward Intensified Oxygen Reduction Electrocatalysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T14%3A17%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineering%20Synergistic%20Edge%E2%80%90N%20Dipole%20in%20Metal%E2%80%90Free%20Carbon%20Nanoflakes%20toward%20Intensified%20Oxygen%20Reduction%20Electrocatalysis&rft.jtitle=Advanced%20functional%20materials&rft.au=Zhang,%20Linjie&rft.date=2021-10-01&rft.volume=31&rft.issue=42&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202103187&rft_dat=%3Cproquest_cross%3E2581774782%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2581774782&rft_id=info:pmid/&rfr_iscdi=true