Engineering Synergistic Edge‐N Dipole in Metal‐Free Carbon Nanoflakes toward Intensified Oxygen Reduction Electrocatalysis
Nitrogen doping represents an effective way to induce charge/spin polarization in nanocarbons for promoting oxygen reduction reaction (ORR) activity. However, it remains elusive to define the dominant active sites with respect to two critical N‐configurations of pyridinic‐N and graphitic‐N. Herein,...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2021-10, Vol.31 (42), p.n/a |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 42 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 31 |
creator | Zhang, Linjie Gu, Tengteng Lu, KangLong Zhou, Liujiang Li, Dong‐Sheng Wang, Ruihu |
description | Nitrogen doping represents an effective way to induce charge/spin polarization in nanocarbons for promoting oxygen reduction reaction (ORR) activity. However, it remains elusive to define the dominant active sites with respect to two critical N‐configurations of pyridinic‐N and graphitic‐N. Herein, a tandem catalytic graphitization and nitrogen modification strategy for the synthesis of metal‐free nitrogen‐doped carbon nanoflakes (NCF) featuring the edge‐suffused and graphite‐analogous structure is presented. NCF exhibits superb Pt‐like ORR activity (0.85 V for half‐wave potential and 5.9 mA cm−2 for diffusion‐limited current density) but much stronger robustness in the alkaline medium. The experimental and theoretical studies suggest the key role of graphitic‐N in ORR. Furthermore, it unveils that the high activity of NCF should be traced to a synergistic polarization of the edge‐type pyridinic‐N/graphitic‐N dipole spaced by one edge peak carbon atom on the armchair edges. This study sheds light on the understanding of ORR active sites in the nitrogen‐doped nanocarbons for ORR.
Edge‐suffused and graphite‐analogous nitrogen‐doped carbon nanoflakes (NCF) are fabricated using a tandem catalytic graphitization and nitrogen modification strategy. The key electronic synergism of the edge‐type pyridinic‐N/graphitic‐N dipole is identified to empower NCF with superior electrocatalytic oxygen reduction performances. |
doi_str_mv | 10.1002/adfm.202103187 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2581774782</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2581774782</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3177-42924b5f64de2d69f895ec494f2582af55b2a4a02c7a271fb9207075ad8e3feb3</originalsourceid><addsrcrecordid>eNqFkEtLAzEUhYMoWKtb1wHXU5PMe1naqRb6AB_gLmRmbobUaaYmU-psxJ_gb_SXmFKpS1f3cvnOOZeD0DUlA0oIuxWlXA8YYZT4NIlPUI9GNPJ8wpLT405fztGFtStCaBz7QQ99ZLpSGsAoXeHHToOplG1VgbOygu_PrwUeq01TA1Yaz6EVtbtNDAAeCZM3Gi-EbmQtXsHittkJU-KpbkFbJRWUePneVaDxA5TbolUOz2ooWtMUwjl1VtlLdCZFbeHqd_bR8yR7Gt17s-XddDSceYXvHvUClrIgD2UUlMDKKJVJGkIRpIFkYcKEDMOciUAQVsSCxVTmKSMxiUNRJuBLyP0-ujn4bkzztgXb8lWzNdpFcufgIoI4YY4aHKjCNNYakHxj1FqYjlPC9x3zfcf82LETpAfBTtXQ_UPz4Xgy_9P-AOvmhAU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2581774782</pqid></control><display><type>article</type><title>Engineering Synergistic Edge‐N Dipole in Metal‐Free Carbon Nanoflakes toward Intensified Oxygen Reduction Electrocatalysis</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Zhang, Linjie ; Gu, Tengteng ; Lu, KangLong ; Zhou, Liujiang ; Li, Dong‐Sheng ; Wang, Ruihu</creator><creatorcontrib>Zhang, Linjie ; Gu, Tengteng ; Lu, KangLong ; Zhou, Liujiang ; Li, Dong‐Sheng ; Wang, Ruihu</creatorcontrib><description>Nitrogen doping represents an effective way to induce charge/spin polarization in nanocarbons for promoting oxygen reduction reaction (ORR) activity. However, it remains elusive to define the dominant active sites with respect to two critical N‐configurations of pyridinic‐N and graphitic‐N. Herein, a tandem catalytic graphitization and nitrogen modification strategy for the synthesis of metal‐free nitrogen‐doped carbon nanoflakes (NCF) featuring the edge‐suffused and graphite‐analogous structure is presented. NCF exhibits superb Pt‐like ORR activity (0.85 V for half‐wave potential and 5.9 mA cm−2 for diffusion‐limited current density) but much stronger robustness in the alkaline medium. The experimental and theoretical studies suggest the key role of graphitic‐N in ORR. Furthermore, it unveils that the high activity of NCF should be traced to a synergistic polarization of the edge‐type pyridinic‐N/graphitic‐N dipole spaced by one edge peak carbon atom on the armchair edges. This study sheds light on the understanding of ORR active sites in the nitrogen‐doped nanocarbons for ORR.
Edge‐suffused and graphite‐analogous nitrogen‐doped carbon nanoflakes (NCF) are fabricated using a tandem catalytic graphitization and nitrogen modification strategy. The key electronic synergism of the edge‐type pyridinic‐N/graphitic‐N dipole is identified to empower NCF with superior electrocatalytic oxygen reduction performances.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202103187</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Carbon ; carbon nanomaterials ; Dipoles ; electrocatalysis ; Graphitization ; Materials science ; metal‐organic frameworks ; Nitrogen ; oxygen reduction reaction ; Oxygen reduction reactions ; Polarization (spin alignment) ; zinc‐air batteries</subject><ispartof>Advanced functional materials, 2021-10, Vol.31 (42), p.n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3177-42924b5f64de2d69f895ec494f2582af55b2a4a02c7a271fb9207075ad8e3feb3</citedby><cites>FETCH-LOGICAL-c3177-42924b5f64de2d69f895ec494f2582af55b2a4a02c7a271fb9207075ad8e3feb3</cites><orcidid>0000-0002-6209-9822</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202103187$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202103187$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Zhang, Linjie</creatorcontrib><creatorcontrib>Gu, Tengteng</creatorcontrib><creatorcontrib>Lu, KangLong</creatorcontrib><creatorcontrib>Zhou, Liujiang</creatorcontrib><creatorcontrib>Li, Dong‐Sheng</creatorcontrib><creatorcontrib>Wang, Ruihu</creatorcontrib><title>Engineering Synergistic Edge‐N Dipole in Metal‐Free Carbon Nanoflakes toward Intensified Oxygen Reduction Electrocatalysis</title><title>Advanced functional materials</title><description>Nitrogen doping represents an effective way to induce charge/spin polarization in nanocarbons for promoting oxygen reduction reaction (ORR) activity. However, it remains elusive to define the dominant active sites with respect to two critical N‐configurations of pyridinic‐N and graphitic‐N. Herein, a tandem catalytic graphitization and nitrogen modification strategy for the synthesis of metal‐free nitrogen‐doped carbon nanoflakes (NCF) featuring the edge‐suffused and graphite‐analogous structure is presented. NCF exhibits superb Pt‐like ORR activity (0.85 V for half‐wave potential and 5.9 mA cm−2 for diffusion‐limited current density) but much stronger robustness in the alkaline medium. The experimental and theoretical studies suggest the key role of graphitic‐N in ORR. Furthermore, it unveils that the high activity of NCF should be traced to a synergistic polarization of the edge‐type pyridinic‐N/graphitic‐N dipole spaced by one edge peak carbon atom on the armchair edges. This study sheds light on the understanding of ORR active sites in the nitrogen‐doped nanocarbons for ORR.
Edge‐suffused and graphite‐analogous nitrogen‐doped carbon nanoflakes (NCF) are fabricated using a tandem catalytic graphitization and nitrogen modification strategy. The key electronic synergism of the edge‐type pyridinic‐N/graphitic‐N dipole is identified to empower NCF with superior electrocatalytic oxygen reduction performances.</description><subject>Carbon</subject><subject>carbon nanomaterials</subject><subject>Dipoles</subject><subject>electrocatalysis</subject><subject>Graphitization</subject><subject>Materials science</subject><subject>metal‐organic frameworks</subject><subject>Nitrogen</subject><subject>oxygen reduction reaction</subject><subject>Oxygen reduction reactions</subject><subject>Polarization (spin alignment)</subject><subject>zinc‐air batteries</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLAzEUhYMoWKtb1wHXU5PMe1naqRb6AB_gLmRmbobUaaYmU-psxJ_gb_SXmFKpS1f3cvnOOZeD0DUlA0oIuxWlXA8YYZT4NIlPUI9GNPJ8wpLT405fztGFtStCaBz7QQ99ZLpSGsAoXeHHToOplG1VgbOygu_PrwUeq01TA1Yaz6EVtbtNDAAeCZM3Gi-EbmQtXsHittkJU-KpbkFbJRWUePneVaDxA5TbolUOz2ooWtMUwjl1VtlLdCZFbeHqd_bR8yR7Gt17s-XddDSceYXvHvUClrIgD2UUlMDKKJVJGkIRpIFkYcKEDMOciUAQVsSCxVTmKSMxiUNRJuBLyP0-ujn4bkzztgXb8lWzNdpFcufgIoI4YY4aHKjCNNYakHxj1FqYjlPC9x3zfcf82LETpAfBTtXQ_UPz4Xgy_9P-AOvmhAU</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Zhang, Linjie</creator><creator>Gu, Tengteng</creator><creator>Lu, KangLong</creator><creator>Zhou, Liujiang</creator><creator>Li, Dong‐Sheng</creator><creator>Wang, Ruihu</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6209-9822</orcidid></search><sort><creationdate>20211001</creationdate><title>Engineering Synergistic Edge‐N Dipole in Metal‐Free Carbon Nanoflakes toward Intensified Oxygen Reduction Electrocatalysis</title><author>Zhang, Linjie ; Gu, Tengteng ; Lu, KangLong ; Zhou, Liujiang ; Li, Dong‐Sheng ; Wang, Ruihu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3177-42924b5f64de2d69f895ec494f2582af55b2a4a02c7a271fb9207075ad8e3feb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Carbon</topic><topic>carbon nanomaterials</topic><topic>Dipoles</topic><topic>electrocatalysis</topic><topic>Graphitization</topic><topic>Materials science</topic><topic>metal‐organic frameworks</topic><topic>Nitrogen</topic><topic>oxygen reduction reaction</topic><topic>Oxygen reduction reactions</topic><topic>Polarization (spin alignment)</topic><topic>zinc‐air batteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Linjie</creatorcontrib><creatorcontrib>Gu, Tengteng</creatorcontrib><creatorcontrib>Lu, KangLong</creatorcontrib><creatorcontrib>Zhou, Liujiang</creatorcontrib><creatorcontrib>Li, Dong‐Sheng</creatorcontrib><creatorcontrib>Wang, Ruihu</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Linjie</au><au>Gu, Tengteng</au><au>Lu, KangLong</au><au>Zhou, Liujiang</au><au>Li, Dong‐Sheng</au><au>Wang, Ruihu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineering Synergistic Edge‐N Dipole in Metal‐Free Carbon Nanoflakes toward Intensified Oxygen Reduction Electrocatalysis</atitle><jtitle>Advanced functional materials</jtitle><date>2021-10-01</date><risdate>2021</risdate><volume>31</volume><issue>42</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Nitrogen doping represents an effective way to induce charge/spin polarization in nanocarbons for promoting oxygen reduction reaction (ORR) activity. However, it remains elusive to define the dominant active sites with respect to two critical N‐configurations of pyridinic‐N and graphitic‐N. Herein, a tandem catalytic graphitization and nitrogen modification strategy for the synthesis of metal‐free nitrogen‐doped carbon nanoflakes (NCF) featuring the edge‐suffused and graphite‐analogous structure is presented. NCF exhibits superb Pt‐like ORR activity (0.85 V for half‐wave potential and 5.9 mA cm−2 for diffusion‐limited current density) but much stronger robustness in the alkaline medium. The experimental and theoretical studies suggest the key role of graphitic‐N in ORR. Furthermore, it unveils that the high activity of NCF should be traced to a synergistic polarization of the edge‐type pyridinic‐N/graphitic‐N dipole spaced by one edge peak carbon atom on the armchair edges. This study sheds light on the understanding of ORR active sites in the nitrogen‐doped nanocarbons for ORR.
Edge‐suffused and graphite‐analogous nitrogen‐doped carbon nanoflakes (NCF) are fabricated using a tandem catalytic graphitization and nitrogen modification strategy. The key electronic synergism of the edge‐type pyridinic‐N/graphitic‐N dipole is identified to empower NCF with superior electrocatalytic oxygen reduction performances.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202103187</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-6209-9822</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2021-10, Vol.31 (42), p.n/a |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_journals_2581774782 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Carbon carbon nanomaterials Dipoles electrocatalysis Graphitization Materials science metal‐organic frameworks Nitrogen oxygen reduction reaction Oxygen reduction reactions Polarization (spin alignment) zinc‐air batteries |
title | Engineering Synergistic Edge‐N Dipole in Metal‐Free Carbon Nanoflakes toward Intensified Oxygen Reduction Electrocatalysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T14%3A17%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineering%20Synergistic%20Edge%E2%80%90N%20Dipole%20in%20Metal%E2%80%90Free%20Carbon%20Nanoflakes%20toward%20Intensified%20Oxygen%20Reduction%20Electrocatalysis&rft.jtitle=Advanced%20functional%20materials&rft.au=Zhang,%20Linjie&rft.date=2021-10-01&rft.volume=31&rft.issue=42&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202103187&rft_dat=%3Cproquest_cross%3E2581774782%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2581774782&rft_id=info:pmid/&rfr_iscdi=true |