On semiparametric regression in functional data analysis
The aim of this paper is to provide a selected advanced review on semiparametric regression which is an emergent promising field of researches in functional data analysis. As a deliberate strategy, we decided to focus our discussion on the single functional index regression (SFIR) model in order to...
Gespeichert in:
Veröffentlicht in: | Wiley interdisciplinary reviews. Computational statistics 2021-11, Vol.13 (6), p.e1538-n/a |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 6 |
container_start_page | e1538 |
container_title | Wiley interdisciplinary reviews. Computational statistics |
container_volume | 13 |
creator | Ling, Nengxiang Vieu, Philippe |
description | The aim of this paper is to provide a selected advanced review on semiparametric regression which is an emergent promising field of researches in functional data analysis. As a deliberate strategy, we decided to focus our discussion on the single functional index regression (SFIR) model in order to fix the ideas about the stakes linked with infinite dimensional problems and about the methodological challenges that one has to solve when building statistical procedure: one of the most challenging issue being the question of dimensionality effects reduction. This will be the first (and the main) part of this discussion and a complete survey of the literature on SFIR model will be presented. In a second attempt, other semiparametric models (and more generally, other dimension reduction models) will be shortly discussed with the double goal of presenting the state of art and of defining challenging tracks for the future. At the end, we will discuss how additive modeling is an appealing idea for more complicated models involving multifunctional predictors and some tracks for the future will be pointed in this setting.
This article is categorized under:
Statistical Models > Semiparametric Models
Data: Types and Structure > Time Series, Stochastic Processes, and Functional Data
Statistical Learning and Exploratory Methods of the Data Sciences > Modeling Methods |
doi_str_mv | 10.1002/wics.1538 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2581684337</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2581684337</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2978-8854bb6d23786743e67fe40b538cfe00ae9e033bb6aad9023e30281c689beaa33</originalsourceid><addsrcrecordid>eNp1kM1Lw0AQxRdRsFYP_gcBTx7SzmbzsTlK8aNQ6EHF4zLZTmRLmtSdhNL_3q3pVeYwj8dvhscT4l7CTAIk84OzPJOZ0hdiIktVxgC5vjzrTIK-FjfM2-AWYSZCr9uIaef26HFHvXc28vTtidl1beTaqB5a2weNTbTBHiMM6siOb8VVjQ3T3XlPxefL88fiLV6tX5eLp1Vsk7LQsdZZWlX5JlGFzotUUV7UlEIVEtqaAJBKAqUCgrgpIVGkINHS5rqsCFGpqXgY_-599zMQ92bbDT6EYJNkWuY6VaoI1ONIWd8xe6rN3rsd-qORYE7FmFMx5lRMYOcje3ANHf8Hzddy8f538QuWImTq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2581684337</pqid></control><display><type>article</type><title>On semiparametric regression in functional data analysis</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Ling, Nengxiang ; Vieu, Philippe</creator><creatorcontrib>Ling, Nengxiang ; Vieu, Philippe</creatorcontrib><description>The aim of this paper is to provide a selected advanced review on semiparametric regression which is an emergent promising field of researches in functional data analysis. As a deliberate strategy, we decided to focus our discussion on the single functional index regression (SFIR) model in order to fix the ideas about the stakes linked with infinite dimensional problems and about the methodological challenges that one has to solve when building statistical procedure: one of the most challenging issue being the question of dimensionality effects reduction. This will be the first (and the main) part of this discussion and a complete survey of the literature on SFIR model will be presented. In a second attempt, other semiparametric models (and more generally, other dimension reduction models) will be shortly discussed with the double goal of presenting the state of art and of defining challenging tracks for the future. At the end, we will discuss how additive modeling is an appealing idea for more complicated models involving multifunctional predictors and some tracks for the future will be pointed in this setting.
This article is categorized under:
Statistical Models > Semiparametric Models
Data: Types and Structure > Time Series, Stochastic Processes, and Functional Data
Statistical Learning and Exploratory Methods of the Data Sciences > Modeling Methods</description><identifier>ISSN: 1939-5108</identifier><identifier>EISSN: 1939-0068</identifier><identifier>DOI: 10.1002/wics.1538</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Additives ; Data analysis ; dimensionality reduction ; Dimensions ; functional data analysis ; Mathematical models ; Methods ; Modelling ; Reduction ; Regression models ; review ; semiparametric modeling ; Statistical analysis ; Statistical models ; Stochastic processes ; Surveying</subject><ispartof>Wiley interdisciplinary reviews. Computational statistics, 2021-11, Vol.13 (6), p.e1538-n/a</ispartof><rights>2020 Wiley Periodicals LLC.</rights><rights>2021 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2978-8854bb6d23786743e67fe40b538cfe00ae9e033bb6aad9023e30281c689beaa33</citedby><cites>FETCH-LOGICAL-c2978-8854bb6d23786743e67fe40b538cfe00ae9e033bb6aad9023e30281c689beaa33</cites><orcidid>0000-0002-1379-0588</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fwics.1538$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fwics.1538$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Ling, Nengxiang</creatorcontrib><creatorcontrib>Vieu, Philippe</creatorcontrib><title>On semiparametric regression in functional data analysis</title><title>Wiley interdisciplinary reviews. Computational statistics</title><description>The aim of this paper is to provide a selected advanced review on semiparametric regression which is an emergent promising field of researches in functional data analysis. As a deliberate strategy, we decided to focus our discussion on the single functional index regression (SFIR) model in order to fix the ideas about the stakes linked with infinite dimensional problems and about the methodological challenges that one has to solve when building statistical procedure: one of the most challenging issue being the question of dimensionality effects reduction. This will be the first (and the main) part of this discussion and a complete survey of the literature on SFIR model will be presented. In a second attempt, other semiparametric models (and more generally, other dimension reduction models) will be shortly discussed with the double goal of presenting the state of art and of defining challenging tracks for the future. At the end, we will discuss how additive modeling is an appealing idea for more complicated models involving multifunctional predictors and some tracks for the future will be pointed in this setting.
This article is categorized under:
Statistical Models > Semiparametric Models
Data: Types and Structure > Time Series, Stochastic Processes, and Functional Data
Statistical Learning and Exploratory Methods of the Data Sciences > Modeling Methods</description><subject>Additives</subject><subject>Data analysis</subject><subject>dimensionality reduction</subject><subject>Dimensions</subject><subject>functional data analysis</subject><subject>Mathematical models</subject><subject>Methods</subject><subject>Modelling</subject><subject>Reduction</subject><subject>Regression models</subject><subject>review</subject><subject>semiparametric modeling</subject><subject>Statistical analysis</subject><subject>Statistical models</subject><subject>Stochastic processes</subject><subject>Surveying</subject><issn>1939-5108</issn><issn>1939-0068</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kM1Lw0AQxRdRsFYP_gcBTx7SzmbzsTlK8aNQ6EHF4zLZTmRLmtSdhNL_3q3pVeYwj8dvhscT4l7CTAIk84OzPJOZ0hdiIktVxgC5vjzrTIK-FjfM2-AWYSZCr9uIaef26HFHvXc28vTtidl1beTaqB5a2weNTbTBHiMM6siOb8VVjQ3T3XlPxefL88fiLV6tX5eLp1Vsk7LQsdZZWlX5JlGFzotUUV7UlEIVEtqaAJBKAqUCgrgpIVGkINHS5rqsCFGpqXgY_-599zMQ92bbDT6EYJNkWuY6VaoI1ONIWd8xe6rN3rsd-qORYE7FmFMx5lRMYOcje3ANHf8Hzddy8f538QuWImTq</recordid><startdate>202111</startdate><enddate>202111</enddate><creator>Ling, Nengxiang</creator><creator>Vieu, Philippe</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>H97</scope><scope>JQ2</scope><scope>L.G</scope><orcidid>https://orcid.org/0000-0002-1379-0588</orcidid></search><sort><creationdate>202111</creationdate><title>On semiparametric regression in functional data analysis</title><author>Ling, Nengxiang ; Vieu, Philippe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2978-8854bb6d23786743e67fe40b538cfe00ae9e033bb6aad9023e30281c689beaa33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Additives</topic><topic>Data analysis</topic><topic>dimensionality reduction</topic><topic>Dimensions</topic><topic>functional data analysis</topic><topic>Mathematical models</topic><topic>Methods</topic><topic>Modelling</topic><topic>Reduction</topic><topic>Regression models</topic><topic>review</topic><topic>semiparametric modeling</topic><topic>Statistical analysis</topic><topic>Statistical models</topic><topic>Stochastic processes</topic><topic>Surveying</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ling, Nengxiang</creatorcontrib><creatorcontrib>Vieu, Philippe</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>ProQuest Computer Science Collection</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Wiley interdisciplinary reviews. Computational statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ling, Nengxiang</au><au>Vieu, Philippe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On semiparametric regression in functional data analysis</atitle><jtitle>Wiley interdisciplinary reviews. Computational statistics</jtitle><date>2021-11</date><risdate>2021</risdate><volume>13</volume><issue>6</issue><spage>e1538</spage><epage>n/a</epage><pages>e1538-n/a</pages><issn>1939-5108</issn><eissn>1939-0068</eissn><abstract>The aim of this paper is to provide a selected advanced review on semiparametric regression which is an emergent promising field of researches in functional data analysis. As a deliberate strategy, we decided to focus our discussion on the single functional index regression (SFIR) model in order to fix the ideas about the stakes linked with infinite dimensional problems and about the methodological challenges that one has to solve when building statistical procedure: one of the most challenging issue being the question of dimensionality effects reduction. This will be the first (and the main) part of this discussion and a complete survey of the literature on SFIR model will be presented. In a second attempt, other semiparametric models (and more generally, other dimension reduction models) will be shortly discussed with the double goal of presenting the state of art and of defining challenging tracks for the future. At the end, we will discuss how additive modeling is an appealing idea for more complicated models involving multifunctional predictors and some tracks for the future will be pointed in this setting.
This article is categorized under:
Statistical Models > Semiparametric Models
Data: Types and Structure > Time Series, Stochastic Processes, and Functional Data
Statistical Learning and Exploratory Methods of the Data Sciences > Modeling Methods</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/wics.1538</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-1379-0588</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1939-5108 |
ispartof | Wiley interdisciplinary reviews. Computational statistics, 2021-11, Vol.13 (6), p.e1538-n/a |
issn | 1939-5108 1939-0068 |
language | eng |
recordid | cdi_proquest_journals_2581684337 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Additives Data analysis dimensionality reduction Dimensions functional data analysis Mathematical models Methods Modelling Reduction Regression models review semiparametric modeling Statistical analysis Statistical models Stochastic processes Surveying |
title | On semiparametric regression in functional data analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T11%3A11%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20semiparametric%20regression%20in%20functional%20data%20analysis&rft.jtitle=Wiley%20interdisciplinary%20reviews.%20Computational%20statistics&rft.au=Ling,%20Nengxiang&rft.date=2021-11&rft.volume=13&rft.issue=6&rft.spage=e1538&rft.epage=n/a&rft.pages=e1538-n/a&rft.issn=1939-5108&rft.eissn=1939-0068&rft_id=info:doi/10.1002/wics.1538&rft_dat=%3Cproquest_cross%3E2581684337%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2581684337&rft_id=info:pmid/&rfr_iscdi=true |