On semiparametric regression in functional data analysis

The aim of this paper is to provide a selected advanced review on semiparametric regression which is an emergent promising field of researches in functional data analysis. As a deliberate strategy, we decided to focus our discussion on the single functional index regression (SFIR) model in order to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Wiley interdisciplinary reviews. Computational statistics 2021-11, Vol.13 (6), p.e1538-n/a
Hauptverfasser: Ling, Nengxiang, Vieu, Philippe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 6
container_start_page e1538
container_title Wiley interdisciplinary reviews. Computational statistics
container_volume 13
creator Ling, Nengxiang
Vieu, Philippe
description The aim of this paper is to provide a selected advanced review on semiparametric regression which is an emergent promising field of researches in functional data analysis. As a deliberate strategy, we decided to focus our discussion on the single functional index regression (SFIR) model in order to fix the ideas about the stakes linked with infinite dimensional problems and about the methodological challenges that one has to solve when building statistical procedure: one of the most challenging issue being the question of dimensionality effects reduction. This will be the first (and the main) part of this discussion and a complete survey of the literature on SFIR model will be presented. In a second attempt, other semiparametric models (and more generally, other dimension reduction models) will be shortly discussed with the double goal of presenting the state of art and of defining challenging tracks for the future. At the end, we will discuss how additive modeling is an appealing idea for more complicated models involving multifunctional predictors and some tracks for the future will be pointed in this setting. This article is categorized under: Statistical Models > Semiparametric Models Data: Types and Structure > Time Series, Stochastic Processes, and Functional Data Statistical Learning and Exploratory Methods of the Data Sciences > Modeling Methods
doi_str_mv 10.1002/wics.1538
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2581684337</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2581684337</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2978-8854bb6d23786743e67fe40b538cfe00ae9e033bb6aad9023e30281c689beaa33</originalsourceid><addsrcrecordid>eNp1kM1Lw0AQxRdRsFYP_gcBTx7SzmbzsTlK8aNQ6EHF4zLZTmRLmtSdhNL_3q3pVeYwj8dvhscT4l7CTAIk84OzPJOZ0hdiIktVxgC5vjzrTIK-FjfM2-AWYSZCr9uIaef26HFHvXc28vTtidl1beTaqB5a2weNTbTBHiMM6siOb8VVjQ3T3XlPxefL88fiLV6tX5eLp1Vsk7LQsdZZWlX5JlGFzotUUV7UlEIVEtqaAJBKAqUCgrgpIVGkINHS5rqsCFGpqXgY_-599zMQ92bbDT6EYJNkWuY6VaoI1ONIWd8xe6rN3rsd-qORYE7FmFMx5lRMYOcje3ANHf8Hzddy8f538QuWImTq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2581684337</pqid></control><display><type>article</type><title>On semiparametric regression in functional data analysis</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Ling, Nengxiang ; Vieu, Philippe</creator><creatorcontrib>Ling, Nengxiang ; Vieu, Philippe</creatorcontrib><description>The aim of this paper is to provide a selected advanced review on semiparametric regression which is an emergent promising field of researches in functional data analysis. As a deliberate strategy, we decided to focus our discussion on the single functional index regression (SFIR) model in order to fix the ideas about the stakes linked with infinite dimensional problems and about the methodological challenges that one has to solve when building statistical procedure: one of the most challenging issue being the question of dimensionality effects reduction. This will be the first (and the main) part of this discussion and a complete survey of the literature on SFIR model will be presented. In a second attempt, other semiparametric models (and more generally, other dimension reduction models) will be shortly discussed with the double goal of presenting the state of art and of defining challenging tracks for the future. At the end, we will discuss how additive modeling is an appealing idea for more complicated models involving multifunctional predictors and some tracks for the future will be pointed in this setting. This article is categorized under: Statistical Models &gt; Semiparametric Models Data: Types and Structure &gt; Time Series, Stochastic Processes, and Functional Data Statistical Learning and Exploratory Methods of the Data Sciences &gt; Modeling Methods</description><identifier>ISSN: 1939-5108</identifier><identifier>EISSN: 1939-0068</identifier><identifier>DOI: 10.1002/wics.1538</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Additives ; Data analysis ; dimensionality reduction ; Dimensions ; functional data analysis ; Mathematical models ; Methods ; Modelling ; Reduction ; Regression models ; review ; semiparametric modeling ; Statistical analysis ; Statistical models ; Stochastic processes ; Surveying</subject><ispartof>Wiley interdisciplinary reviews. Computational statistics, 2021-11, Vol.13 (6), p.e1538-n/a</ispartof><rights>2020 Wiley Periodicals LLC.</rights><rights>2021 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2978-8854bb6d23786743e67fe40b538cfe00ae9e033bb6aad9023e30281c689beaa33</citedby><cites>FETCH-LOGICAL-c2978-8854bb6d23786743e67fe40b538cfe00ae9e033bb6aad9023e30281c689beaa33</cites><orcidid>0000-0002-1379-0588</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fwics.1538$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fwics.1538$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Ling, Nengxiang</creatorcontrib><creatorcontrib>Vieu, Philippe</creatorcontrib><title>On semiparametric regression in functional data analysis</title><title>Wiley interdisciplinary reviews. Computational statistics</title><description>The aim of this paper is to provide a selected advanced review on semiparametric regression which is an emergent promising field of researches in functional data analysis. As a deliberate strategy, we decided to focus our discussion on the single functional index regression (SFIR) model in order to fix the ideas about the stakes linked with infinite dimensional problems and about the methodological challenges that one has to solve when building statistical procedure: one of the most challenging issue being the question of dimensionality effects reduction. This will be the first (and the main) part of this discussion and a complete survey of the literature on SFIR model will be presented. In a second attempt, other semiparametric models (and more generally, other dimension reduction models) will be shortly discussed with the double goal of presenting the state of art and of defining challenging tracks for the future. At the end, we will discuss how additive modeling is an appealing idea for more complicated models involving multifunctional predictors and some tracks for the future will be pointed in this setting. This article is categorized under: Statistical Models &gt; Semiparametric Models Data: Types and Structure &gt; Time Series, Stochastic Processes, and Functional Data Statistical Learning and Exploratory Methods of the Data Sciences &gt; Modeling Methods</description><subject>Additives</subject><subject>Data analysis</subject><subject>dimensionality reduction</subject><subject>Dimensions</subject><subject>functional data analysis</subject><subject>Mathematical models</subject><subject>Methods</subject><subject>Modelling</subject><subject>Reduction</subject><subject>Regression models</subject><subject>review</subject><subject>semiparametric modeling</subject><subject>Statistical analysis</subject><subject>Statistical models</subject><subject>Stochastic processes</subject><subject>Surveying</subject><issn>1939-5108</issn><issn>1939-0068</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kM1Lw0AQxRdRsFYP_gcBTx7SzmbzsTlK8aNQ6EHF4zLZTmRLmtSdhNL_3q3pVeYwj8dvhscT4l7CTAIk84OzPJOZ0hdiIktVxgC5vjzrTIK-FjfM2-AWYSZCr9uIaef26HFHvXc28vTtidl1beTaqB5a2weNTbTBHiMM6siOb8VVjQ3T3XlPxefL88fiLV6tX5eLp1Vsk7LQsdZZWlX5JlGFzotUUV7UlEIVEtqaAJBKAqUCgrgpIVGkINHS5rqsCFGpqXgY_-599zMQ92bbDT6EYJNkWuY6VaoI1ONIWd8xe6rN3rsd-qORYE7FmFMx5lRMYOcje3ANHf8Hzddy8f538QuWImTq</recordid><startdate>202111</startdate><enddate>202111</enddate><creator>Ling, Nengxiang</creator><creator>Vieu, Philippe</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>H97</scope><scope>JQ2</scope><scope>L.G</scope><orcidid>https://orcid.org/0000-0002-1379-0588</orcidid></search><sort><creationdate>202111</creationdate><title>On semiparametric regression in functional data analysis</title><author>Ling, Nengxiang ; Vieu, Philippe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2978-8854bb6d23786743e67fe40b538cfe00ae9e033bb6aad9023e30281c689beaa33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Additives</topic><topic>Data analysis</topic><topic>dimensionality reduction</topic><topic>Dimensions</topic><topic>functional data analysis</topic><topic>Mathematical models</topic><topic>Methods</topic><topic>Modelling</topic><topic>Reduction</topic><topic>Regression models</topic><topic>review</topic><topic>semiparametric modeling</topic><topic>Statistical analysis</topic><topic>Statistical models</topic><topic>Stochastic processes</topic><topic>Surveying</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ling, Nengxiang</creatorcontrib><creatorcontrib>Vieu, Philippe</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>ProQuest Computer Science Collection</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Wiley interdisciplinary reviews. Computational statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ling, Nengxiang</au><au>Vieu, Philippe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On semiparametric regression in functional data analysis</atitle><jtitle>Wiley interdisciplinary reviews. Computational statistics</jtitle><date>2021-11</date><risdate>2021</risdate><volume>13</volume><issue>6</issue><spage>e1538</spage><epage>n/a</epage><pages>e1538-n/a</pages><issn>1939-5108</issn><eissn>1939-0068</eissn><abstract>The aim of this paper is to provide a selected advanced review on semiparametric regression which is an emergent promising field of researches in functional data analysis. As a deliberate strategy, we decided to focus our discussion on the single functional index regression (SFIR) model in order to fix the ideas about the stakes linked with infinite dimensional problems and about the methodological challenges that one has to solve when building statistical procedure: one of the most challenging issue being the question of dimensionality effects reduction. This will be the first (and the main) part of this discussion and a complete survey of the literature on SFIR model will be presented. In a second attempt, other semiparametric models (and more generally, other dimension reduction models) will be shortly discussed with the double goal of presenting the state of art and of defining challenging tracks for the future. At the end, we will discuss how additive modeling is an appealing idea for more complicated models involving multifunctional predictors and some tracks for the future will be pointed in this setting. This article is categorized under: Statistical Models &gt; Semiparametric Models Data: Types and Structure &gt; Time Series, Stochastic Processes, and Functional Data Statistical Learning and Exploratory Methods of the Data Sciences &gt; Modeling Methods</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/wics.1538</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-1379-0588</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1939-5108
ispartof Wiley interdisciplinary reviews. Computational statistics, 2021-11, Vol.13 (6), p.e1538-n/a
issn 1939-5108
1939-0068
language eng
recordid cdi_proquest_journals_2581684337
source Wiley Online Library Journals Frontfile Complete
subjects Additives
Data analysis
dimensionality reduction
Dimensions
functional data analysis
Mathematical models
Methods
Modelling
Reduction
Regression models
review
semiparametric modeling
Statistical analysis
Statistical models
Stochastic processes
Surveying
title On semiparametric regression in functional data analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T11%3A11%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20semiparametric%20regression%20in%20functional%20data%20analysis&rft.jtitle=Wiley%20interdisciplinary%20reviews.%20Computational%20statistics&rft.au=Ling,%20Nengxiang&rft.date=2021-11&rft.volume=13&rft.issue=6&rft.spage=e1538&rft.epage=n/a&rft.pages=e1538-n/a&rft.issn=1939-5108&rft.eissn=1939-0068&rft_id=info:doi/10.1002/wics.1538&rft_dat=%3Cproquest_cross%3E2581684337%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2581684337&rft_id=info:pmid/&rfr_iscdi=true