Magnetic Control and Real‐Time Monitoring of Stem Cell Differentiation by the Ligand Nanoassembly
Native extracellular matrix (ECM) exhibits dynamic change in the ligand position. Herein, the ECM‐emulating control and real‐time monitoring of stem cell differentiation are demonstrated by ligand nanoassembly. The density of gold nanoassembly presenting cell‐adhesive Arg‐Gly‐Asp (RGD) ligand on Fe3...
Gespeichert in:
Veröffentlicht in: | Small (Weinheim an der Bergstrasse, Germany) Germany), 2021-10, Vol.17 (41), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 41 |
container_start_page | |
container_title | Small (Weinheim an der Bergstrasse, Germany) |
container_volume | 17 |
creator | Lee, Sungkyu Kim, Myeong Soo Patel, Kapil D. Choi, Hyojun Thangam, Ramar Yoon, Jinho Koo, Thomas Myeongseok Jung, Hee Joon Min, Sunhong Bae, Gunhyu Kim, Yuri Han, Seong‐Beom Kang, Nayeon Kim, Minjin Li, Na Fu, Hong En Jeon, Yoo Sang Song, Jae‐Jun Kim, Dong‐Hwee Park, Steve Choi, Jeong‐Woo Paulmurugan, Ramasamy Kang, Yun Chan Lee, Heon Wei, Qiang Dravid, Vinayak P. Lee, Ki‐Bum Kim, Young Keun Kang, Heemin |
description | Native extracellular matrix (ECM) exhibits dynamic change in the ligand position. Herein, the ECM‐emulating control and real‐time monitoring of stem cell differentiation are demonstrated by ligand nanoassembly. The density of gold nanoassembly presenting cell‐adhesive Arg‐Gly‐Asp (RGD) ligand on Fe3O4 (magnetite) nanoparticle in nanostructures flexibly grafted to material is changed while keeping macroscale ligand density invariant. The ligand nanoassembly on the Fe3O4 can be magnetically attracted to mediate rising and falling ligand movements via linker stretching and compression, respectively. High ligand nanoassembly density stimulates integrin ligation to activate the mechanosensing‐assisted stem cell differentiation, which is monitored via in situ real‐time electrochemical sensing. Magnetic control of rising and falling ligand movements hinders and promotes the adhesion‐mediated mechanotransduction and differentiation of stem cells, respectively. These rising and falling ligand states yield the difference in the farthest distance (≈34.6 nm) of the RGD from material surface, thereby dynamically mimicking static long and short flexible linkers, which hinder and promote cell adhesion, respectively. Design of cytocompatible ligand nanoassemblies can be made with combinations of dimensions, shapes, and biomimetic ligands for remotely regulating stem cells for offering novel methodologies to advance regenerative therapies.
The extracellular matrix (ECM)‐emulating control of ligand nanoassembly is reported. Magnetic control of increasing and decreasing vertical distance of the ligand nanoassembly from material surface hinders and promotes mechanotransduction‐mediated stem cell differentiation, respectively, in a ligand nanoassembly density manner, and it can be nontoxically and noninvasively monitored via in situ real‐time electrochemical sensing. |
doi_str_mv | 10.1002/smll.202102892 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2581661406</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2581661406</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3502-5f31a6cc6185b5e422435a924317fee99dfc76b47d3653de0a3b647cf9f16bbe3</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRSMEEqWwZW2JdYofiZMsUXhKKUi0rCMnGRdXjl1sVyg7PoFv5EtIVQRLNjOzOPeOdKLonOAZwZhe-l7rGcWUYJoX9CCaEE5YzHNaHP7eBB9HJ96vMWaEJtkkaudiZSCoFpXWBGc1EqZDzyD018fnUvWA5taoYJ0yK2QlWgToUQlao2slJTgwQYmgrEHNgMIroEqtdg2PwljhPfSNHk6jIym0h7OfPY1ebm-W5X1cPd09lFdV3LIU0ziVjAjetpzkaZNCQmnCUlGMk2QSoCg62Wa8SbKO8ZR1gAVreJK1spCENw2waXSx7904-7YFH-q13TozvqxpmhPOSYL5SM32VOus9w5kvXGqF26oCa53IuudyPpX5Bgo9oF3pWH4h64X86r6y34Da6R4zw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2581661406</pqid></control><display><type>article</type><title>Magnetic Control and Real‐Time Monitoring of Stem Cell Differentiation by the Ligand Nanoassembly</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Lee, Sungkyu ; Kim, Myeong Soo ; Patel, Kapil D. ; Choi, Hyojun ; Thangam, Ramar ; Yoon, Jinho ; Koo, Thomas Myeongseok ; Jung, Hee Joon ; Min, Sunhong ; Bae, Gunhyu ; Kim, Yuri ; Han, Seong‐Beom ; Kang, Nayeon ; Kim, Minjin ; Li, Na ; Fu, Hong En ; Jeon, Yoo Sang ; Song, Jae‐Jun ; Kim, Dong‐Hwee ; Park, Steve ; Choi, Jeong‐Woo ; Paulmurugan, Ramasamy ; Kang, Yun Chan ; Lee, Heon ; Wei, Qiang ; Dravid, Vinayak P. ; Lee, Ki‐Bum ; Kim, Young Keun ; Kang, Heemin</creator><creatorcontrib>Lee, Sungkyu ; Kim, Myeong Soo ; Patel, Kapil D. ; Choi, Hyojun ; Thangam, Ramar ; Yoon, Jinho ; Koo, Thomas Myeongseok ; Jung, Hee Joon ; Min, Sunhong ; Bae, Gunhyu ; Kim, Yuri ; Han, Seong‐Beom ; Kang, Nayeon ; Kim, Minjin ; Li, Na ; Fu, Hong En ; Jeon, Yoo Sang ; Song, Jae‐Jun ; Kim, Dong‐Hwee ; Park, Steve ; Choi, Jeong‐Woo ; Paulmurugan, Ramasamy ; Kang, Yun Chan ; Lee, Heon ; Wei, Qiang ; Dravid, Vinayak P. ; Lee, Ki‐Bum ; Kim, Young Keun ; Kang, Heemin</creatorcontrib><description>Native extracellular matrix (ECM) exhibits dynamic change in the ligand position. Herein, the ECM‐emulating control and real‐time monitoring of stem cell differentiation are demonstrated by ligand nanoassembly. The density of gold nanoassembly presenting cell‐adhesive Arg‐Gly‐Asp (RGD) ligand on Fe3O4 (magnetite) nanoparticle in nanostructures flexibly grafted to material is changed while keeping macroscale ligand density invariant. The ligand nanoassembly on the Fe3O4 can be magnetically attracted to mediate rising and falling ligand movements via linker stretching and compression, respectively. High ligand nanoassembly density stimulates integrin ligation to activate the mechanosensing‐assisted stem cell differentiation, which is monitored via in situ real‐time electrochemical sensing. Magnetic control of rising and falling ligand movements hinders and promotes the adhesion‐mediated mechanotransduction and differentiation of stem cells, respectively. These rising and falling ligand states yield the difference in the farthest distance (≈34.6 nm) of the RGD from material surface, thereby dynamically mimicking static long and short flexible linkers, which hinder and promote cell adhesion, respectively. Design of cytocompatible ligand nanoassemblies can be made with combinations of dimensions, shapes, and biomimetic ligands for remotely regulating stem cells for offering novel methodologies to advance regenerative therapies.
The extracellular matrix (ECM)‐emulating control of ligand nanoassembly is reported. Magnetic control of increasing and decreasing vertical distance of the ligand nanoassembly from material surface hinders and promotes mechanotransduction‐mediated stem cell differentiation, respectively, in a ligand nanoassembly density manner, and it can be nontoxically and noninvasively monitored via in situ real‐time electrochemical sensing.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202102892</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Biomimetics ; Cell adhesion ; Density ; Differentiation (biology) ; Iron oxides ; ligand nanoassembly ; Ligands ; Magnetic control ; Monitoring ; Nanoparticles ; Nanotechnology ; real‐time differentiation monitoring ; stem cell differentiation ; Stem cells</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2021-10, Vol.17 (41), p.n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3502-5f31a6cc6185b5e422435a924317fee99dfc76b47d3653de0a3b647cf9f16bbe3</citedby><cites>FETCH-LOGICAL-c3502-5f31a6cc6185b5e422435a924317fee99dfc76b47d3653de0a3b647cf9f16bbe3</cites><orcidid>0000-0003-2694-9882</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202102892$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202102892$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Lee, Sungkyu</creatorcontrib><creatorcontrib>Kim, Myeong Soo</creatorcontrib><creatorcontrib>Patel, Kapil D.</creatorcontrib><creatorcontrib>Choi, Hyojun</creatorcontrib><creatorcontrib>Thangam, Ramar</creatorcontrib><creatorcontrib>Yoon, Jinho</creatorcontrib><creatorcontrib>Koo, Thomas Myeongseok</creatorcontrib><creatorcontrib>Jung, Hee Joon</creatorcontrib><creatorcontrib>Min, Sunhong</creatorcontrib><creatorcontrib>Bae, Gunhyu</creatorcontrib><creatorcontrib>Kim, Yuri</creatorcontrib><creatorcontrib>Han, Seong‐Beom</creatorcontrib><creatorcontrib>Kang, Nayeon</creatorcontrib><creatorcontrib>Kim, Minjin</creatorcontrib><creatorcontrib>Li, Na</creatorcontrib><creatorcontrib>Fu, Hong En</creatorcontrib><creatorcontrib>Jeon, Yoo Sang</creatorcontrib><creatorcontrib>Song, Jae‐Jun</creatorcontrib><creatorcontrib>Kim, Dong‐Hwee</creatorcontrib><creatorcontrib>Park, Steve</creatorcontrib><creatorcontrib>Choi, Jeong‐Woo</creatorcontrib><creatorcontrib>Paulmurugan, Ramasamy</creatorcontrib><creatorcontrib>Kang, Yun Chan</creatorcontrib><creatorcontrib>Lee, Heon</creatorcontrib><creatorcontrib>Wei, Qiang</creatorcontrib><creatorcontrib>Dravid, Vinayak P.</creatorcontrib><creatorcontrib>Lee, Ki‐Bum</creatorcontrib><creatorcontrib>Kim, Young Keun</creatorcontrib><creatorcontrib>Kang, Heemin</creatorcontrib><title>Magnetic Control and Real‐Time Monitoring of Stem Cell Differentiation by the Ligand Nanoassembly</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><description>Native extracellular matrix (ECM) exhibits dynamic change in the ligand position. Herein, the ECM‐emulating control and real‐time monitoring of stem cell differentiation are demonstrated by ligand nanoassembly. The density of gold nanoassembly presenting cell‐adhesive Arg‐Gly‐Asp (RGD) ligand on Fe3O4 (magnetite) nanoparticle in nanostructures flexibly grafted to material is changed while keeping macroscale ligand density invariant. The ligand nanoassembly on the Fe3O4 can be magnetically attracted to mediate rising and falling ligand movements via linker stretching and compression, respectively. High ligand nanoassembly density stimulates integrin ligation to activate the mechanosensing‐assisted stem cell differentiation, which is monitored via in situ real‐time electrochemical sensing. Magnetic control of rising and falling ligand movements hinders and promotes the adhesion‐mediated mechanotransduction and differentiation of stem cells, respectively. These rising and falling ligand states yield the difference in the farthest distance (≈34.6 nm) of the RGD from material surface, thereby dynamically mimicking static long and short flexible linkers, which hinder and promote cell adhesion, respectively. Design of cytocompatible ligand nanoassemblies can be made with combinations of dimensions, shapes, and biomimetic ligands for remotely regulating stem cells for offering novel methodologies to advance regenerative therapies.
The extracellular matrix (ECM)‐emulating control of ligand nanoassembly is reported. Magnetic control of increasing and decreasing vertical distance of the ligand nanoassembly from material surface hinders and promotes mechanotransduction‐mediated stem cell differentiation, respectively, in a ligand nanoassembly density manner, and it can be nontoxically and noninvasively monitored via in situ real‐time electrochemical sensing.</description><subject>Biomimetics</subject><subject>Cell adhesion</subject><subject>Density</subject><subject>Differentiation (biology)</subject><subject>Iron oxides</subject><subject>ligand nanoassembly</subject><subject>Ligands</subject><subject>Magnetic control</subject><subject>Monitoring</subject><subject>Nanoparticles</subject><subject>Nanotechnology</subject><subject>real‐time differentiation monitoring</subject><subject>stem cell differentiation</subject><subject>Stem cells</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAQRSMEEqWwZW2JdYofiZMsUXhKKUi0rCMnGRdXjl1sVyg7PoFv5EtIVQRLNjOzOPeOdKLonOAZwZhe-l7rGcWUYJoX9CCaEE5YzHNaHP7eBB9HJ96vMWaEJtkkaudiZSCoFpXWBGc1EqZDzyD018fnUvWA5taoYJ0yK2QlWgToUQlao2slJTgwQYmgrEHNgMIroEqtdg2PwljhPfSNHk6jIym0h7OfPY1ebm-W5X1cPd09lFdV3LIU0ziVjAjetpzkaZNCQmnCUlGMk2QSoCg62Wa8SbKO8ZR1gAVreJK1spCENw2waXSx7904-7YFH-q13TozvqxpmhPOSYL5SM32VOus9w5kvXGqF26oCa53IuudyPpX5Bgo9oF3pWH4h64X86r6y34Da6R4zw</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Lee, Sungkyu</creator><creator>Kim, Myeong Soo</creator><creator>Patel, Kapil D.</creator><creator>Choi, Hyojun</creator><creator>Thangam, Ramar</creator><creator>Yoon, Jinho</creator><creator>Koo, Thomas Myeongseok</creator><creator>Jung, Hee Joon</creator><creator>Min, Sunhong</creator><creator>Bae, Gunhyu</creator><creator>Kim, Yuri</creator><creator>Han, Seong‐Beom</creator><creator>Kang, Nayeon</creator><creator>Kim, Minjin</creator><creator>Li, Na</creator><creator>Fu, Hong En</creator><creator>Jeon, Yoo Sang</creator><creator>Song, Jae‐Jun</creator><creator>Kim, Dong‐Hwee</creator><creator>Park, Steve</creator><creator>Choi, Jeong‐Woo</creator><creator>Paulmurugan, Ramasamy</creator><creator>Kang, Yun Chan</creator><creator>Lee, Heon</creator><creator>Wei, Qiang</creator><creator>Dravid, Vinayak P.</creator><creator>Lee, Ki‐Bum</creator><creator>Kim, Young Keun</creator><creator>Kang, Heemin</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2694-9882</orcidid></search><sort><creationdate>20211001</creationdate><title>Magnetic Control and Real‐Time Monitoring of Stem Cell Differentiation by the Ligand Nanoassembly</title><author>Lee, Sungkyu ; Kim, Myeong Soo ; Patel, Kapil D. ; Choi, Hyojun ; Thangam, Ramar ; Yoon, Jinho ; Koo, Thomas Myeongseok ; Jung, Hee Joon ; Min, Sunhong ; Bae, Gunhyu ; Kim, Yuri ; Han, Seong‐Beom ; Kang, Nayeon ; Kim, Minjin ; Li, Na ; Fu, Hong En ; Jeon, Yoo Sang ; Song, Jae‐Jun ; Kim, Dong‐Hwee ; Park, Steve ; Choi, Jeong‐Woo ; Paulmurugan, Ramasamy ; Kang, Yun Chan ; Lee, Heon ; Wei, Qiang ; Dravid, Vinayak P. ; Lee, Ki‐Bum ; Kim, Young Keun ; Kang, Heemin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3502-5f31a6cc6185b5e422435a924317fee99dfc76b47d3653de0a3b647cf9f16bbe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biomimetics</topic><topic>Cell adhesion</topic><topic>Density</topic><topic>Differentiation (biology)</topic><topic>Iron oxides</topic><topic>ligand nanoassembly</topic><topic>Ligands</topic><topic>Magnetic control</topic><topic>Monitoring</topic><topic>Nanoparticles</topic><topic>Nanotechnology</topic><topic>real‐time differentiation monitoring</topic><topic>stem cell differentiation</topic><topic>Stem cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Sungkyu</creatorcontrib><creatorcontrib>Kim, Myeong Soo</creatorcontrib><creatorcontrib>Patel, Kapil D.</creatorcontrib><creatorcontrib>Choi, Hyojun</creatorcontrib><creatorcontrib>Thangam, Ramar</creatorcontrib><creatorcontrib>Yoon, Jinho</creatorcontrib><creatorcontrib>Koo, Thomas Myeongseok</creatorcontrib><creatorcontrib>Jung, Hee Joon</creatorcontrib><creatorcontrib>Min, Sunhong</creatorcontrib><creatorcontrib>Bae, Gunhyu</creatorcontrib><creatorcontrib>Kim, Yuri</creatorcontrib><creatorcontrib>Han, Seong‐Beom</creatorcontrib><creatorcontrib>Kang, Nayeon</creatorcontrib><creatorcontrib>Kim, Minjin</creatorcontrib><creatorcontrib>Li, Na</creatorcontrib><creatorcontrib>Fu, Hong En</creatorcontrib><creatorcontrib>Jeon, Yoo Sang</creatorcontrib><creatorcontrib>Song, Jae‐Jun</creatorcontrib><creatorcontrib>Kim, Dong‐Hwee</creatorcontrib><creatorcontrib>Park, Steve</creatorcontrib><creatorcontrib>Choi, Jeong‐Woo</creatorcontrib><creatorcontrib>Paulmurugan, Ramasamy</creatorcontrib><creatorcontrib>Kang, Yun Chan</creatorcontrib><creatorcontrib>Lee, Heon</creatorcontrib><creatorcontrib>Wei, Qiang</creatorcontrib><creatorcontrib>Dravid, Vinayak P.</creatorcontrib><creatorcontrib>Lee, Ki‐Bum</creatorcontrib><creatorcontrib>Kim, Young Keun</creatorcontrib><creatorcontrib>Kang, Heemin</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Sungkyu</au><au>Kim, Myeong Soo</au><au>Patel, Kapil D.</au><au>Choi, Hyojun</au><au>Thangam, Ramar</au><au>Yoon, Jinho</au><au>Koo, Thomas Myeongseok</au><au>Jung, Hee Joon</au><au>Min, Sunhong</au><au>Bae, Gunhyu</au><au>Kim, Yuri</au><au>Han, Seong‐Beom</au><au>Kang, Nayeon</au><au>Kim, Minjin</au><au>Li, Na</au><au>Fu, Hong En</au><au>Jeon, Yoo Sang</au><au>Song, Jae‐Jun</au><au>Kim, Dong‐Hwee</au><au>Park, Steve</au><au>Choi, Jeong‐Woo</au><au>Paulmurugan, Ramasamy</au><au>Kang, Yun Chan</au><au>Lee, Heon</au><au>Wei, Qiang</au><au>Dravid, Vinayak P.</au><au>Lee, Ki‐Bum</au><au>Kim, Young Keun</au><au>Kang, Heemin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetic Control and Real‐Time Monitoring of Stem Cell Differentiation by the Ligand Nanoassembly</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><date>2021-10-01</date><risdate>2021</risdate><volume>17</volume><issue>41</issue><epage>n/a</epage><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Native extracellular matrix (ECM) exhibits dynamic change in the ligand position. Herein, the ECM‐emulating control and real‐time monitoring of stem cell differentiation are demonstrated by ligand nanoassembly. The density of gold nanoassembly presenting cell‐adhesive Arg‐Gly‐Asp (RGD) ligand on Fe3O4 (magnetite) nanoparticle in nanostructures flexibly grafted to material is changed while keeping macroscale ligand density invariant. The ligand nanoassembly on the Fe3O4 can be magnetically attracted to mediate rising and falling ligand movements via linker stretching and compression, respectively. High ligand nanoassembly density stimulates integrin ligation to activate the mechanosensing‐assisted stem cell differentiation, which is monitored via in situ real‐time electrochemical sensing. Magnetic control of rising and falling ligand movements hinders and promotes the adhesion‐mediated mechanotransduction and differentiation of stem cells, respectively. These rising and falling ligand states yield the difference in the farthest distance (≈34.6 nm) of the RGD from material surface, thereby dynamically mimicking static long and short flexible linkers, which hinder and promote cell adhesion, respectively. Design of cytocompatible ligand nanoassemblies can be made with combinations of dimensions, shapes, and biomimetic ligands for remotely regulating stem cells for offering novel methodologies to advance regenerative therapies.
The extracellular matrix (ECM)‐emulating control of ligand nanoassembly is reported. Magnetic control of increasing and decreasing vertical distance of the ligand nanoassembly from material surface hinders and promotes mechanotransduction‐mediated stem cell differentiation, respectively, in a ligand nanoassembly density manner, and it can be nontoxically and noninvasively monitored via in situ real‐time electrochemical sensing.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/smll.202102892</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-2694-9882</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1613-6810 |
ispartof | Small (Weinheim an der Bergstrasse, Germany), 2021-10, Vol.17 (41), p.n/a |
issn | 1613-6810 1613-6829 |
language | eng |
recordid | cdi_proquest_journals_2581661406 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Biomimetics Cell adhesion Density Differentiation (biology) Iron oxides ligand nanoassembly Ligands Magnetic control Monitoring Nanoparticles Nanotechnology real‐time differentiation monitoring stem cell differentiation Stem cells |
title | Magnetic Control and Real‐Time Monitoring of Stem Cell Differentiation by the Ligand Nanoassembly |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T23%3A39%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetic%20Control%20and%20Real%E2%80%90Time%20Monitoring%20of%20Stem%20Cell%20Differentiation%20by%20the%20Ligand%20Nanoassembly&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Lee,%20Sungkyu&rft.date=2021-10-01&rft.volume=17&rft.issue=41&rft.epage=n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202102892&rft_dat=%3Cproquest_cross%3E2581661406%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2581661406&rft_id=info:pmid/&rfr_iscdi=true |