Magnetic Control and Real‐Time Monitoring of Stem Cell Differentiation by the Ligand Nanoassembly

Native extracellular matrix (ECM) exhibits dynamic change in the ligand position. Herein, the ECM‐emulating control and real‐time monitoring of stem cell differentiation are demonstrated by ligand nanoassembly. The density of gold nanoassembly presenting cell‐adhesive Arg‐Gly‐Asp (RGD) ligand on Fe3...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2021-10, Vol.17 (41), p.n/a
Hauptverfasser: Lee, Sungkyu, Kim, Myeong Soo, Patel, Kapil D., Choi, Hyojun, Thangam, Ramar, Yoon, Jinho, Koo, Thomas Myeongseok, Jung, Hee Joon, Min, Sunhong, Bae, Gunhyu, Kim, Yuri, Han, Seong‐Beom, Kang, Nayeon, Kim, Minjin, Li, Na, Fu, Hong En, Jeon, Yoo Sang, Song, Jae‐Jun, Kim, Dong‐Hwee, Park, Steve, Choi, Jeong‐Woo, Paulmurugan, Ramasamy, Kang, Yun Chan, Lee, Heon, Wei, Qiang, Dravid, Vinayak P., Lee, Ki‐Bum, Kim, Young Keun, Kang, Heemin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 41
container_start_page
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 17
creator Lee, Sungkyu
Kim, Myeong Soo
Patel, Kapil D.
Choi, Hyojun
Thangam, Ramar
Yoon, Jinho
Koo, Thomas Myeongseok
Jung, Hee Joon
Min, Sunhong
Bae, Gunhyu
Kim, Yuri
Han, Seong‐Beom
Kang, Nayeon
Kim, Minjin
Li, Na
Fu, Hong En
Jeon, Yoo Sang
Song, Jae‐Jun
Kim, Dong‐Hwee
Park, Steve
Choi, Jeong‐Woo
Paulmurugan, Ramasamy
Kang, Yun Chan
Lee, Heon
Wei, Qiang
Dravid, Vinayak P.
Lee, Ki‐Bum
Kim, Young Keun
Kang, Heemin
description Native extracellular matrix (ECM) exhibits dynamic change in the ligand position. Herein, the ECM‐emulating control and real‐time monitoring of stem cell differentiation are demonstrated by ligand nanoassembly. The density of gold nanoassembly presenting cell‐adhesive Arg‐Gly‐Asp (RGD) ligand on Fe3O4 (magnetite) nanoparticle in nanostructures flexibly grafted to material is changed while keeping macroscale ligand density invariant. The ligand nanoassembly on the Fe3O4 can be magnetically attracted to mediate rising and falling ligand movements via linker stretching and compression, respectively. High ligand nanoassembly density stimulates integrin ligation to activate the mechanosensing‐assisted stem cell differentiation, which is monitored via in situ real‐time electrochemical sensing. Magnetic control of rising and falling ligand movements hinders and promotes the adhesion‐mediated mechanotransduction and differentiation of stem cells, respectively. These rising and falling ligand states yield the difference in the farthest distance (≈34.6 nm) of the RGD from material surface, thereby dynamically mimicking static long and short flexible linkers, which hinder and promote cell adhesion, respectively. Design of cytocompatible ligand nanoassemblies can be made with combinations of dimensions, shapes, and biomimetic ligands for remotely regulating stem cells for offering novel methodologies to advance regenerative therapies. The extracellular matrix (ECM)‐emulating control of ligand nanoassembly is reported. Magnetic control of increasing and decreasing vertical distance of the ligand nanoassembly from material surface hinders and promotes mechanotransduction‐mediated stem cell differentiation, respectively, in a ligand nanoassembly density manner, and it can be nontoxically and noninvasively monitored via in situ real‐time electrochemical sensing.
doi_str_mv 10.1002/smll.202102892
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2581661406</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2581661406</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3502-5f31a6cc6185b5e422435a924317fee99dfc76b47d3653de0a3b647cf9f16bbe3</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRSMEEqWwZW2JdYofiZMsUXhKKUi0rCMnGRdXjl1sVyg7PoFv5EtIVQRLNjOzOPeOdKLonOAZwZhe-l7rGcWUYJoX9CCaEE5YzHNaHP7eBB9HJ96vMWaEJtkkaudiZSCoFpXWBGc1EqZDzyD018fnUvWA5taoYJ0yK2QlWgToUQlao2slJTgwQYmgrEHNgMIroEqtdg2PwljhPfSNHk6jIym0h7OfPY1ebm-W5X1cPd09lFdV3LIU0ziVjAjetpzkaZNCQmnCUlGMk2QSoCg62Wa8SbKO8ZR1gAVreJK1spCENw2waXSx7904-7YFH-q13TozvqxpmhPOSYL5SM32VOus9w5kvXGqF26oCa53IuudyPpX5Bgo9oF3pWH4h64X86r6y34Da6R4zw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2581661406</pqid></control><display><type>article</type><title>Magnetic Control and Real‐Time Monitoring of Stem Cell Differentiation by the Ligand Nanoassembly</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Lee, Sungkyu ; Kim, Myeong Soo ; Patel, Kapil D. ; Choi, Hyojun ; Thangam, Ramar ; Yoon, Jinho ; Koo, Thomas Myeongseok ; Jung, Hee Joon ; Min, Sunhong ; Bae, Gunhyu ; Kim, Yuri ; Han, Seong‐Beom ; Kang, Nayeon ; Kim, Minjin ; Li, Na ; Fu, Hong En ; Jeon, Yoo Sang ; Song, Jae‐Jun ; Kim, Dong‐Hwee ; Park, Steve ; Choi, Jeong‐Woo ; Paulmurugan, Ramasamy ; Kang, Yun Chan ; Lee, Heon ; Wei, Qiang ; Dravid, Vinayak P. ; Lee, Ki‐Bum ; Kim, Young Keun ; Kang, Heemin</creator><creatorcontrib>Lee, Sungkyu ; Kim, Myeong Soo ; Patel, Kapil D. ; Choi, Hyojun ; Thangam, Ramar ; Yoon, Jinho ; Koo, Thomas Myeongseok ; Jung, Hee Joon ; Min, Sunhong ; Bae, Gunhyu ; Kim, Yuri ; Han, Seong‐Beom ; Kang, Nayeon ; Kim, Minjin ; Li, Na ; Fu, Hong En ; Jeon, Yoo Sang ; Song, Jae‐Jun ; Kim, Dong‐Hwee ; Park, Steve ; Choi, Jeong‐Woo ; Paulmurugan, Ramasamy ; Kang, Yun Chan ; Lee, Heon ; Wei, Qiang ; Dravid, Vinayak P. ; Lee, Ki‐Bum ; Kim, Young Keun ; Kang, Heemin</creatorcontrib><description>Native extracellular matrix (ECM) exhibits dynamic change in the ligand position. Herein, the ECM‐emulating control and real‐time monitoring of stem cell differentiation are demonstrated by ligand nanoassembly. The density of gold nanoassembly presenting cell‐adhesive Arg‐Gly‐Asp (RGD) ligand on Fe3O4 (magnetite) nanoparticle in nanostructures flexibly grafted to material is changed while keeping macroscale ligand density invariant. The ligand nanoassembly on the Fe3O4 can be magnetically attracted to mediate rising and falling ligand movements via linker stretching and compression, respectively. High ligand nanoassembly density stimulates integrin ligation to activate the mechanosensing‐assisted stem cell differentiation, which is monitored via in situ real‐time electrochemical sensing. Magnetic control of rising and falling ligand movements hinders and promotes the adhesion‐mediated mechanotransduction and differentiation of stem cells, respectively. These rising and falling ligand states yield the difference in the farthest distance (≈34.6 nm) of the RGD from material surface, thereby dynamically mimicking static long and short flexible linkers, which hinder and promote cell adhesion, respectively. Design of cytocompatible ligand nanoassemblies can be made with combinations of dimensions, shapes, and biomimetic ligands for remotely regulating stem cells for offering novel methodologies to advance regenerative therapies. The extracellular matrix (ECM)‐emulating control of ligand nanoassembly is reported. Magnetic control of increasing and decreasing vertical distance of the ligand nanoassembly from material surface hinders and promotes mechanotransduction‐mediated stem cell differentiation, respectively, in a ligand nanoassembly density manner, and it can be nontoxically and noninvasively monitored via in situ real‐time electrochemical sensing.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202102892</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Biomimetics ; Cell adhesion ; Density ; Differentiation (biology) ; Iron oxides ; ligand nanoassembly ; Ligands ; Magnetic control ; Monitoring ; Nanoparticles ; Nanotechnology ; real‐time differentiation monitoring ; stem cell differentiation ; Stem cells</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2021-10, Vol.17 (41), p.n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3502-5f31a6cc6185b5e422435a924317fee99dfc76b47d3653de0a3b647cf9f16bbe3</citedby><cites>FETCH-LOGICAL-c3502-5f31a6cc6185b5e422435a924317fee99dfc76b47d3653de0a3b647cf9f16bbe3</cites><orcidid>0000-0003-2694-9882</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202102892$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202102892$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Lee, Sungkyu</creatorcontrib><creatorcontrib>Kim, Myeong Soo</creatorcontrib><creatorcontrib>Patel, Kapil D.</creatorcontrib><creatorcontrib>Choi, Hyojun</creatorcontrib><creatorcontrib>Thangam, Ramar</creatorcontrib><creatorcontrib>Yoon, Jinho</creatorcontrib><creatorcontrib>Koo, Thomas Myeongseok</creatorcontrib><creatorcontrib>Jung, Hee Joon</creatorcontrib><creatorcontrib>Min, Sunhong</creatorcontrib><creatorcontrib>Bae, Gunhyu</creatorcontrib><creatorcontrib>Kim, Yuri</creatorcontrib><creatorcontrib>Han, Seong‐Beom</creatorcontrib><creatorcontrib>Kang, Nayeon</creatorcontrib><creatorcontrib>Kim, Minjin</creatorcontrib><creatorcontrib>Li, Na</creatorcontrib><creatorcontrib>Fu, Hong En</creatorcontrib><creatorcontrib>Jeon, Yoo Sang</creatorcontrib><creatorcontrib>Song, Jae‐Jun</creatorcontrib><creatorcontrib>Kim, Dong‐Hwee</creatorcontrib><creatorcontrib>Park, Steve</creatorcontrib><creatorcontrib>Choi, Jeong‐Woo</creatorcontrib><creatorcontrib>Paulmurugan, Ramasamy</creatorcontrib><creatorcontrib>Kang, Yun Chan</creatorcontrib><creatorcontrib>Lee, Heon</creatorcontrib><creatorcontrib>Wei, Qiang</creatorcontrib><creatorcontrib>Dravid, Vinayak P.</creatorcontrib><creatorcontrib>Lee, Ki‐Bum</creatorcontrib><creatorcontrib>Kim, Young Keun</creatorcontrib><creatorcontrib>Kang, Heemin</creatorcontrib><title>Magnetic Control and Real‐Time Monitoring of Stem Cell Differentiation by the Ligand Nanoassembly</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><description>Native extracellular matrix (ECM) exhibits dynamic change in the ligand position. Herein, the ECM‐emulating control and real‐time monitoring of stem cell differentiation are demonstrated by ligand nanoassembly. The density of gold nanoassembly presenting cell‐adhesive Arg‐Gly‐Asp (RGD) ligand on Fe3O4 (magnetite) nanoparticle in nanostructures flexibly grafted to material is changed while keeping macroscale ligand density invariant. The ligand nanoassembly on the Fe3O4 can be magnetically attracted to mediate rising and falling ligand movements via linker stretching and compression, respectively. High ligand nanoassembly density stimulates integrin ligation to activate the mechanosensing‐assisted stem cell differentiation, which is monitored via in situ real‐time electrochemical sensing. Magnetic control of rising and falling ligand movements hinders and promotes the adhesion‐mediated mechanotransduction and differentiation of stem cells, respectively. These rising and falling ligand states yield the difference in the farthest distance (≈34.6 nm) of the RGD from material surface, thereby dynamically mimicking static long and short flexible linkers, which hinder and promote cell adhesion, respectively. Design of cytocompatible ligand nanoassemblies can be made with combinations of dimensions, shapes, and biomimetic ligands for remotely regulating stem cells for offering novel methodologies to advance regenerative therapies. The extracellular matrix (ECM)‐emulating control of ligand nanoassembly is reported. Magnetic control of increasing and decreasing vertical distance of the ligand nanoassembly from material surface hinders and promotes mechanotransduction‐mediated stem cell differentiation, respectively, in a ligand nanoassembly density manner, and it can be nontoxically and noninvasively monitored via in situ real‐time electrochemical sensing.</description><subject>Biomimetics</subject><subject>Cell adhesion</subject><subject>Density</subject><subject>Differentiation (biology)</subject><subject>Iron oxides</subject><subject>ligand nanoassembly</subject><subject>Ligands</subject><subject>Magnetic control</subject><subject>Monitoring</subject><subject>Nanoparticles</subject><subject>Nanotechnology</subject><subject>real‐time differentiation monitoring</subject><subject>stem cell differentiation</subject><subject>Stem cells</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAQRSMEEqWwZW2JdYofiZMsUXhKKUi0rCMnGRdXjl1sVyg7PoFv5EtIVQRLNjOzOPeOdKLonOAZwZhe-l7rGcWUYJoX9CCaEE5YzHNaHP7eBB9HJ96vMWaEJtkkaudiZSCoFpXWBGc1EqZDzyD018fnUvWA5taoYJ0yK2QlWgToUQlao2slJTgwQYmgrEHNgMIroEqtdg2PwljhPfSNHk6jIym0h7OfPY1ebm-W5X1cPd09lFdV3LIU0ziVjAjetpzkaZNCQmnCUlGMk2QSoCg62Wa8SbKO8ZR1gAVreJK1spCENw2waXSx7904-7YFH-q13TozvqxpmhPOSYL5SM32VOus9w5kvXGqF26oCa53IuudyPpX5Bgo9oF3pWH4h64X86r6y34Da6R4zw</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Lee, Sungkyu</creator><creator>Kim, Myeong Soo</creator><creator>Patel, Kapil D.</creator><creator>Choi, Hyojun</creator><creator>Thangam, Ramar</creator><creator>Yoon, Jinho</creator><creator>Koo, Thomas Myeongseok</creator><creator>Jung, Hee Joon</creator><creator>Min, Sunhong</creator><creator>Bae, Gunhyu</creator><creator>Kim, Yuri</creator><creator>Han, Seong‐Beom</creator><creator>Kang, Nayeon</creator><creator>Kim, Minjin</creator><creator>Li, Na</creator><creator>Fu, Hong En</creator><creator>Jeon, Yoo Sang</creator><creator>Song, Jae‐Jun</creator><creator>Kim, Dong‐Hwee</creator><creator>Park, Steve</creator><creator>Choi, Jeong‐Woo</creator><creator>Paulmurugan, Ramasamy</creator><creator>Kang, Yun Chan</creator><creator>Lee, Heon</creator><creator>Wei, Qiang</creator><creator>Dravid, Vinayak P.</creator><creator>Lee, Ki‐Bum</creator><creator>Kim, Young Keun</creator><creator>Kang, Heemin</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2694-9882</orcidid></search><sort><creationdate>20211001</creationdate><title>Magnetic Control and Real‐Time Monitoring of Stem Cell Differentiation by the Ligand Nanoassembly</title><author>Lee, Sungkyu ; Kim, Myeong Soo ; Patel, Kapil D. ; Choi, Hyojun ; Thangam, Ramar ; Yoon, Jinho ; Koo, Thomas Myeongseok ; Jung, Hee Joon ; Min, Sunhong ; Bae, Gunhyu ; Kim, Yuri ; Han, Seong‐Beom ; Kang, Nayeon ; Kim, Minjin ; Li, Na ; Fu, Hong En ; Jeon, Yoo Sang ; Song, Jae‐Jun ; Kim, Dong‐Hwee ; Park, Steve ; Choi, Jeong‐Woo ; Paulmurugan, Ramasamy ; Kang, Yun Chan ; Lee, Heon ; Wei, Qiang ; Dravid, Vinayak P. ; Lee, Ki‐Bum ; Kim, Young Keun ; Kang, Heemin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3502-5f31a6cc6185b5e422435a924317fee99dfc76b47d3653de0a3b647cf9f16bbe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biomimetics</topic><topic>Cell adhesion</topic><topic>Density</topic><topic>Differentiation (biology)</topic><topic>Iron oxides</topic><topic>ligand nanoassembly</topic><topic>Ligands</topic><topic>Magnetic control</topic><topic>Monitoring</topic><topic>Nanoparticles</topic><topic>Nanotechnology</topic><topic>real‐time differentiation monitoring</topic><topic>stem cell differentiation</topic><topic>Stem cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Sungkyu</creatorcontrib><creatorcontrib>Kim, Myeong Soo</creatorcontrib><creatorcontrib>Patel, Kapil D.</creatorcontrib><creatorcontrib>Choi, Hyojun</creatorcontrib><creatorcontrib>Thangam, Ramar</creatorcontrib><creatorcontrib>Yoon, Jinho</creatorcontrib><creatorcontrib>Koo, Thomas Myeongseok</creatorcontrib><creatorcontrib>Jung, Hee Joon</creatorcontrib><creatorcontrib>Min, Sunhong</creatorcontrib><creatorcontrib>Bae, Gunhyu</creatorcontrib><creatorcontrib>Kim, Yuri</creatorcontrib><creatorcontrib>Han, Seong‐Beom</creatorcontrib><creatorcontrib>Kang, Nayeon</creatorcontrib><creatorcontrib>Kim, Minjin</creatorcontrib><creatorcontrib>Li, Na</creatorcontrib><creatorcontrib>Fu, Hong En</creatorcontrib><creatorcontrib>Jeon, Yoo Sang</creatorcontrib><creatorcontrib>Song, Jae‐Jun</creatorcontrib><creatorcontrib>Kim, Dong‐Hwee</creatorcontrib><creatorcontrib>Park, Steve</creatorcontrib><creatorcontrib>Choi, Jeong‐Woo</creatorcontrib><creatorcontrib>Paulmurugan, Ramasamy</creatorcontrib><creatorcontrib>Kang, Yun Chan</creatorcontrib><creatorcontrib>Lee, Heon</creatorcontrib><creatorcontrib>Wei, Qiang</creatorcontrib><creatorcontrib>Dravid, Vinayak P.</creatorcontrib><creatorcontrib>Lee, Ki‐Bum</creatorcontrib><creatorcontrib>Kim, Young Keun</creatorcontrib><creatorcontrib>Kang, Heemin</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Sungkyu</au><au>Kim, Myeong Soo</au><au>Patel, Kapil D.</au><au>Choi, Hyojun</au><au>Thangam, Ramar</au><au>Yoon, Jinho</au><au>Koo, Thomas Myeongseok</au><au>Jung, Hee Joon</au><au>Min, Sunhong</au><au>Bae, Gunhyu</au><au>Kim, Yuri</au><au>Han, Seong‐Beom</au><au>Kang, Nayeon</au><au>Kim, Minjin</au><au>Li, Na</au><au>Fu, Hong En</au><au>Jeon, Yoo Sang</au><au>Song, Jae‐Jun</au><au>Kim, Dong‐Hwee</au><au>Park, Steve</au><au>Choi, Jeong‐Woo</au><au>Paulmurugan, Ramasamy</au><au>Kang, Yun Chan</au><au>Lee, Heon</au><au>Wei, Qiang</au><au>Dravid, Vinayak P.</au><au>Lee, Ki‐Bum</au><au>Kim, Young Keun</au><au>Kang, Heemin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetic Control and Real‐Time Monitoring of Stem Cell Differentiation by the Ligand Nanoassembly</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><date>2021-10-01</date><risdate>2021</risdate><volume>17</volume><issue>41</issue><epage>n/a</epage><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Native extracellular matrix (ECM) exhibits dynamic change in the ligand position. Herein, the ECM‐emulating control and real‐time monitoring of stem cell differentiation are demonstrated by ligand nanoassembly. The density of gold nanoassembly presenting cell‐adhesive Arg‐Gly‐Asp (RGD) ligand on Fe3O4 (magnetite) nanoparticle in nanostructures flexibly grafted to material is changed while keeping macroscale ligand density invariant. The ligand nanoassembly on the Fe3O4 can be magnetically attracted to mediate rising and falling ligand movements via linker stretching and compression, respectively. High ligand nanoassembly density stimulates integrin ligation to activate the mechanosensing‐assisted stem cell differentiation, which is monitored via in situ real‐time electrochemical sensing. Magnetic control of rising and falling ligand movements hinders and promotes the adhesion‐mediated mechanotransduction and differentiation of stem cells, respectively. These rising and falling ligand states yield the difference in the farthest distance (≈34.6 nm) of the RGD from material surface, thereby dynamically mimicking static long and short flexible linkers, which hinder and promote cell adhesion, respectively. Design of cytocompatible ligand nanoassemblies can be made with combinations of dimensions, shapes, and biomimetic ligands for remotely regulating stem cells for offering novel methodologies to advance regenerative therapies. The extracellular matrix (ECM)‐emulating control of ligand nanoassembly is reported. Magnetic control of increasing and decreasing vertical distance of the ligand nanoassembly from material surface hinders and promotes mechanotransduction‐mediated stem cell differentiation, respectively, in a ligand nanoassembly density manner, and it can be nontoxically and noninvasively monitored via in situ real‐time electrochemical sensing.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/smll.202102892</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-2694-9882</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2021-10, Vol.17 (41), p.n/a
issn 1613-6810
1613-6829
language eng
recordid cdi_proquest_journals_2581661406
source Wiley Online Library Journals Frontfile Complete
subjects Biomimetics
Cell adhesion
Density
Differentiation (biology)
Iron oxides
ligand nanoassembly
Ligands
Magnetic control
Monitoring
Nanoparticles
Nanotechnology
real‐time differentiation monitoring
stem cell differentiation
Stem cells
title Magnetic Control and Real‐Time Monitoring of Stem Cell Differentiation by the Ligand Nanoassembly
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T23%3A39%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetic%20Control%20and%20Real%E2%80%90Time%20Monitoring%20of%20Stem%20Cell%20Differentiation%20by%20the%20Ligand%20Nanoassembly&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Lee,%20Sungkyu&rft.date=2021-10-01&rft.volume=17&rft.issue=41&rft.epage=n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202102892&rft_dat=%3Cproquest_cross%3E2581661406%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2581661406&rft_id=info:pmid/&rfr_iscdi=true