Generalization Techniques Empirically Outperform Differential Privacy against Membership Inference
Differentially private training algorithms provide protection against one of the most popular attacks in machine learning: the membership inference attack. However, these privacy algorithms incur a loss of the model's classification accuracy, therefore creating a privacy-utility trade-off. The...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2021-10 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!