On-Site/In Situ Continuous Detecting ppb-Level Metal Ions in Drinking Water Using Block Loop-Gap Resonators and Machine Learning

Microwave measurements and machine learning algorithms are presented to estimate metal ion concentrations in drinking water. A novel block loop gap resonator (BLGR) as a microwave probe is designed and fabricated to estimate Pb ion concentrations in city water as low as 1 ppb with an rms error of 0....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on instrumentation and measurement 2021, Vol.70, p.1-9
Hauptverfasser: Oh, Sangmin, Hossen, Imtiaz, Luglio, Juan, Justin, Gusphyl, Richie, James E., Medeiros, Henry, Lee, Chung Hoon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9
container_issue
container_start_page 1
container_title IEEE transactions on instrumentation and measurement
container_volume 70
creator Oh, Sangmin
Hossen, Imtiaz
Luglio, Juan
Justin, Gusphyl
Richie, James E.
Medeiros, Henry
Lee, Chung Hoon
description Microwave measurements and machine learning algorithms are presented to estimate metal ion concentrations in drinking water. A novel block loop gap resonator (BLGR) as a microwave probe is designed and fabricated to estimate Pb ion concentrations in city water as low as 1 ppb with an rms error of 0.18 ppb. No physical contact between the BLGR probe and the water sample allows on-site/in situ continuous detection of ppb-level metal ion concentrations. The S_{11} raw data (amplitude and phase) from the BLGR are used to classify and estimate metal ion concentrations using a support vector regression algorithm. The performance of the proposed method to estimate Pb concentrations in the presence of interfering metal ions (Cu 2+ , Fe 3+ , and Zn 2+ ) is also evaluated, and it is found that the average measurement error remains less than 13%.
doi_str_mv 10.1109/TIM.2021.3115215
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2581568101</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9547301</ieee_id><sourcerecordid>2581568101</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-6a9df5c1b109bf74c41a0d25f6ba3491338ef97a77393ac7a0f0259de9a209413</originalsourceid><addsrcrecordid>eNo9kMFLwzAUxoMoOKd3wUvAc7ekaZrmqFNnoWOgGx5L2r5qt5rUJBW8-afbsuHpew9-3_d4H0LXlMwoJXK-SVezkIR0xijlIeUnaEI5F4GM4_AUTQihSSAjHp-jC-d2hBARR2KCftc6eG08zFONB-3xwmjf6N70Dj-Ah3JY3nHXFUEG39DiFXjV4tRohxuNH2yj9yPwpjxYvHXjfN-aco8zY7pgqTr8As5o5Y11WOkKr1T50WjAGSirB_wSndWqdXB11CnaPj1uFs9Btl6mi7ssKBljPoiVrGpe0mL4tahFVEZUkSrkdVwoFknKWAK1FEoIJpkqhSI1CbmsQKqQyIiyKbo95HbWfPXgfL4zvdXDyTzkCeVxQslIkQNVWuOchTrvbPOp7E9OST72nA8952PP-bHnwXJzsDQA8I9LHgk2BP4Bh-541Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2581568101</pqid></control><display><type>article</type><title>On-Site/In Situ Continuous Detecting ppb-Level Metal Ions in Drinking Water Using Block Loop-Gap Resonators and Machine Learning</title><source>IEEE Electronic Library (IEL)</source><creator>Oh, Sangmin ; Hossen, Imtiaz ; Luglio, Juan ; Justin, Gusphyl ; Richie, James E. ; Medeiros, Henry ; Lee, Chung Hoon</creator><creatorcontrib>Oh, Sangmin ; Hossen, Imtiaz ; Luglio, Juan ; Justin, Gusphyl ; Richie, James E. ; Medeiros, Henry ; Lee, Chung Hoon</creatorcontrib><description>Microwave measurements and machine learning algorithms are presented to estimate metal ion concentrations in drinking water. A novel block loop gap resonator (BLGR) as a microwave probe is designed and fabricated to estimate Pb ion concentrations in city water as low as 1 ppb with an rms error of 0.18 ppb. No physical contact between the BLGR probe and the water sample allows on-site/in situ continuous detection of ppb-level metal ion concentrations. The &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;S_{11} &lt;/tex-math&gt;&lt;/inline-formula&gt; raw data (amplitude and phase) from the BLGR are used to classify and estimate metal ion concentrations using a support vector regression algorithm. The performance of the proposed method to estimate Pb concentrations in the presence of interfering metal ions (Cu 2+ , Fe 3+ , and Zn 2+ ) is also evaluated, and it is found that the average measurement error remains less than 13%.</description><identifier>ISSN: 0018-9456</identifier><identifier>EISSN: 1557-9662</identifier><identifier>DOI: 10.1109/TIM.2021.3115215</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Capacitance ; Drinking water ; Error analysis ; Ions ; Lead ; Loop gap resonator (LGR) ; Machine learning ; Metal ions ; metal ions in water ; Metals ; Microwave probes ; microwave sensor ; Onsite ; Pb contaminants ; Pb sensor ; Resonant frequency ; Resonators ; Sensors ; Support vector machines ; Water sampling</subject><ispartof>IEEE transactions on instrumentation and measurement, 2021, Vol.70, p.1-9</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-6a9df5c1b109bf74c41a0d25f6ba3491338ef97a77393ac7a0f0259de9a209413</citedby><cites>FETCH-LOGICAL-c333t-6a9df5c1b109bf74c41a0d25f6ba3491338ef97a77393ac7a0f0259de9a209413</cites><orcidid>0000-0001-6179-0091 ; 0000-0002-5313-1050 ; 0000-0002-8713-1411 ; 0000-0002-7704-5587 ; 0000-0002-2931-0518 ; 0000-0003-0023-7633 ; 0000-0003-3319-983X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9547301$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4010,27900,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9547301$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Oh, Sangmin</creatorcontrib><creatorcontrib>Hossen, Imtiaz</creatorcontrib><creatorcontrib>Luglio, Juan</creatorcontrib><creatorcontrib>Justin, Gusphyl</creatorcontrib><creatorcontrib>Richie, James E.</creatorcontrib><creatorcontrib>Medeiros, Henry</creatorcontrib><creatorcontrib>Lee, Chung Hoon</creatorcontrib><title>On-Site/In Situ Continuous Detecting ppb-Level Metal Ions in Drinking Water Using Block Loop-Gap Resonators and Machine Learning</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description>Microwave measurements and machine learning algorithms are presented to estimate metal ion concentrations in drinking water. A novel block loop gap resonator (BLGR) as a microwave probe is designed and fabricated to estimate Pb ion concentrations in city water as low as 1 ppb with an rms error of 0.18 ppb. No physical contact between the BLGR probe and the water sample allows on-site/in situ continuous detection of ppb-level metal ion concentrations. The &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;S_{11} &lt;/tex-math&gt;&lt;/inline-formula&gt; raw data (amplitude and phase) from the BLGR are used to classify and estimate metal ion concentrations using a support vector regression algorithm. The performance of the proposed method to estimate Pb concentrations in the presence of interfering metal ions (Cu 2+ , Fe 3+ , and Zn 2+ ) is also evaluated, and it is found that the average measurement error remains less than 13%.</description><subject>Algorithms</subject><subject>Capacitance</subject><subject>Drinking water</subject><subject>Error analysis</subject><subject>Ions</subject><subject>Lead</subject><subject>Loop gap resonator (LGR)</subject><subject>Machine learning</subject><subject>Metal ions</subject><subject>metal ions in water</subject><subject>Metals</subject><subject>Microwave probes</subject><subject>microwave sensor</subject><subject>Onsite</subject><subject>Pb contaminants</subject><subject>Pb sensor</subject><subject>Resonant frequency</subject><subject>Resonators</subject><subject>Sensors</subject><subject>Support vector machines</subject><subject>Water sampling</subject><issn>0018-9456</issn><issn>1557-9662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMFLwzAUxoMoOKd3wUvAc7ekaZrmqFNnoWOgGx5L2r5qt5rUJBW8-afbsuHpew9-3_d4H0LXlMwoJXK-SVezkIR0xijlIeUnaEI5F4GM4_AUTQihSSAjHp-jC-d2hBARR2KCftc6eG08zFONB-3xwmjf6N70Dj-Ah3JY3nHXFUEG39DiFXjV4tRohxuNH2yj9yPwpjxYvHXjfN-aco8zY7pgqTr8As5o5Y11WOkKr1T50WjAGSirB_wSndWqdXB11CnaPj1uFs9Btl6mi7ssKBljPoiVrGpe0mL4tahFVEZUkSrkdVwoFknKWAK1FEoIJpkqhSI1CbmsQKqQyIiyKbo95HbWfPXgfL4zvdXDyTzkCeVxQslIkQNVWuOchTrvbPOp7E9OST72nA8952PP-bHnwXJzsDQA8I9LHgk2BP4Bh-541Q</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Oh, Sangmin</creator><creator>Hossen, Imtiaz</creator><creator>Luglio, Juan</creator><creator>Justin, Gusphyl</creator><creator>Richie, James E.</creator><creator>Medeiros, Henry</creator><creator>Lee, Chung Hoon</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6179-0091</orcidid><orcidid>https://orcid.org/0000-0002-5313-1050</orcidid><orcidid>https://orcid.org/0000-0002-8713-1411</orcidid><orcidid>https://orcid.org/0000-0002-7704-5587</orcidid><orcidid>https://orcid.org/0000-0002-2931-0518</orcidid><orcidid>https://orcid.org/0000-0003-0023-7633</orcidid><orcidid>https://orcid.org/0000-0003-3319-983X</orcidid></search><sort><creationdate>2021</creationdate><title>On-Site/In Situ Continuous Detecting ppb-Level Metal Ions in Drinking Water Using Block Loop-Gap Resonators and Machine Learning</title><author>Oh, Sangmin ; Hossen, Imtiaz ; Luglio, Juan ; Justin, Gusphyl ; Richie, James E. ; Medeiros, Henry ; Lee, Chung Hoon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-6a9df5c1b109bf74c41a0d25f6ba3491338ef97a77393ac7a0f0259de9a209413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Capacitance</topic><topic>Drinking water</topic><topic>Error analysis</topic><topic>Ions</topic><topic>Lead</topic><topic>Loop gap resonator (LGR)</topic><topic>Machine learning</topic><topic>Metal ions</topic><topic>metal ions in water</topic><topic>Metals</topic><topic>Microwave probes</topic><topic>microwave sensor</topic><topic>Onsite</topic><topic>Pb contaminants</topic><topic>Pb sensor</topic><topic>Resonant frequency</topic><topic>Resonators</topic><topic>Sensors</topic><topic>Support vector machines</topic><topic>Water sampling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oh, Sangmin</creatorcontrib><creatorcontrib>Hossen, Imtiaz</creatorcontrib><creatorcontrib>Luglio, Juan</creatorcontrib><creatorcontrib>Justin, Gusphyl</creatorcontrib><creatorcontrib>Richie, James E.</creatorcontrib><creatorcontrib>Medeiros, Henry</creatorcontrib><creatorcontrib>Lee, Chung Hoon</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Oh, Sangmin</au><au>Hossen, Imtiaz</au><au>Luglio, Juan</au><au>Justin, Gusphyl</au><au>Richie, James E.</au><au>Medeiros, Henry</au><au>Lee, Chung Hoon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On-Site/In Situ Continuous Detecting ppb-Level Metal Ions in Drinking Water Using Block Loop-Gap Resonators and Machine Learning</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>2021</date><risdate>2021</risdate><volume>70</volume><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>0018-9456</issn><eissn>1557-9662</eissn><coden>IEIMAO</coden><abstract>Microwave measurements and machine learning algorithms are presented to estimate metal ion concentrations in drinking water. A novel block loop gap resonator (BLGR) as a microwave probe is designed and fabricated to estimate Pb ion concentrations in city water as low as 1 ppb with an rms error of 0.18 ppb. No physical contact between the BLGR probe and the water sample allows on-site/in situ continuous detection of ppb-level metal ion concentrations. The &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;S_{11} &lt;/tex-math&gt;&lt;/inline-formula&gt; raw data (amplitude and phase) from the BLGR are used to classify and estimate metal ion concentrations using a support vector regression algorithm. The performance of the proposed method to estimate Pb concentrations in the presence of interfering metal ions (Cu 2+ , Fe 3+ , and Zn 2+ ) is also evaluated, and it is found that the average measurement error remains less than 13%.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIM.2021.3115215</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-6179-0091</orcidid><orcidid>https://orcid.org/0000-0002-5313-1050</orcidid><orcidid>https://orcid.org/0000-0002-8713-1411</orcidid><orcidid>https://orcid.org/0000-0002-7704-5587</orcidid><orcidid>https://orcid.org/0000-0002-2931-0518</orcidid><orcidid>https://orcid.org/0000-0003-0023-7633</orcidid><orcidid>https://orcid.org/0000-0003-3319-983X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9456
ispartof IEEE transactions on instrumentation and measurement, 2021, Vol.70, p.1-9
issn 0018-9456
1557-9662
language eng
recordid cdi_proquest_journals_2581568101
source IEEE Electronic Library (IEL)
subjects Algorithms
Capacitance
Drinking water
Error analysis
Ions
Lead
Loop gap resonator (LGR)
Machine learning
Metal ions
metal ions in water
Metals
Microwave probes
microwave sensor
Onsite
Pb contaminants
Pb sensor
Resonant frequency
Resonators
Sensors
Support vector machines
Water sampling
title On-Site/In Situ Continuous Detecting ppb-Level Metal Ions in Drinking Water Using Block Loop-Gap Resonators and Machine Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T17%3A29%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On-Site/In%20Situ%20Continuous%20Detecting%20ppb-Level%20Metal%20Ions%20in%20Drinking%20Water%20Using%20Block%20Loop-Gap%20Resonators%20and%20Machine%20Learning&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Oh,%20Sangmin&rft.date=2021&rft.volume=70&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=0018-9456&rft.eissn=1557-9662&rft.coden=IEIMAO&rft_id=info:doi/10.1109/TIM.2021.3115215&rft_dat=%3Cproquest_RIE%3E2581568101%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2581568101&rft_id=info:pmid/&rft_ieee_id=9547301&rfr_iscdi=true