On-Site/In Situ Continuous Detecting ppb-Level Metal Ions in Drinking Water Using Block Loop-Gap Resonators and Machine Learning
Microwave measurements and machine learning algorithms are presented to estimate metal ion concentrations in drinking water. A novel block loop gap resonator (BLGR) as a microwave probe is designed and fabricated to estimate Pb ion concentrations in city water as low as 1 ppb with an rms error of 0....
Gespeichert in:
Veröffentlicht in: | IEEE transactions on instrumentation and measurement 2021, Vol.70, p.1-9 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on instrumentation and measurement |
container_volume | 70 |
creator | Oh, Sangmin Hossen, Imtiaz Luglio, Juan Justin, Gusphyl Richie, James E. Medeiros, Henry Lee, Chung Hoon |
description | Microwave measurements and machine learning algorithms are presented to estimate metal ion concentrations in drinking water. A novel block loop gap resonator (BLGR) as a microwave probe is designed and fabricated to estimate Pb ion concentrations in city water as low as 1 ppb with an rms error of 0.18 ppb. No physical contact between the BLGR probe and the water sample allows on-site/in situ continuous detection of ppb-level metal ion concentrations. The S_{11} raw data (amplitude and phase) from the BLGR are used to classify and estimate metal ion concentrations using a support vector regression algorithm. The performance of the proposed method to estimate Pb concentrations in the presence of interfering metal ions (Cu 2+ , Fe 3+ , and Zn 2+ ) is also evaluated, and it is found that the average measurement error remains less than 13%. |
doi_str_mv | 10.1109/TIM.2021.3115215 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2581568101</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9547301</ieee_id><sourcerecordid>2581568101</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-6a9df5c1b109bf74c41a0d25f6ba3491338ef97a77393ac7a0f0259de9a209413</originalsourceid><addsrcrecordid>eNo9kMFLwzAUxoMoOKd3wUvAc7ekaZrmqFNnoWOgGx5L2r5qt5rUJBW8-afbsuHpew9-3_d4H0LXlMwoJXK-SVezkIR0xijlIeUnaEI5F4GM4_AUTQihSSAjHp-jC-d2hBARR2KCftc6eG08zFONB-3xwmjf6N70Dj-Ah3JY3nHXFUEG39DiFXjV4tRohxuNH2yj9yPwpjxYvHXjfN-aco8zY7pgqTr8As5o5Y11WOkKr1T50WjAGSirB_wSndWqdXB11CnaPj1uFs9Btl6mi7ssKBljPoiVrGpe0mL4tahFVEZUkSrkdVwoFknKWAK1FEoIJpkqhSI1CbmsQKqQyIiyKbo95HbWfPXgfL4zvdXDyTzkCeVxQslIkQNVWuOchTrvbPOp7E9OST72nA8952PP-bHnwXJzsDQA8I9LHgk2BP4Bh-541Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2581568101</pqid></control><display><type>article</type><title>On-Site/In Situ Continuous Detecting ppb-Level Metal Ions in Drinking Water Using Block Loop-Gap Resonators and Machine Learning</title><source>IEEE Electronic Library (IEL)</source><creator>Oh, Sangmin ; Hossen, Imtiaz ; Luglio, Juan ; Justin, Gusphyl ; Richie, James E. ; Medeiros, Henry ; Lee, Chung Hoon</creator><creatorcontrib>Oh, Sangmin ; Hossen, Imtiaz ; Luglio, Juan ; Justin, Gusphyl ; Richie, James E. ; Medeiros, Henry ; Lee, Chung Hoon</creatorcontrib><description>Microwave measurements and machine learning algorithms are presented to estimate metal ion concentrations in drinking water. A novel block loop gap resonator (BLGR) as a microwave probe is designed and fabricated to estimate Pb ion concentrations in city water as low as 1 ppb with an rms error of 0.18 ppb. No physical contact between the BLGR probe and the water sample allows on-site/in situ continuous detection of ppb-level metal ion concentrations. The <inline-formula> <tex-math notation="LaTeX">S_{11} </tex-math></inline-formula> raw data (amplitude and phase) from the BLGR are used to classify and estimate metal ion concentrations using a support vector regression algorithm. The performance of the proposed method to estimate Pb concentrations in the presence of interfering metal ions (Cu 2+ , Fe 3+ , and Zn 2+ ) is also evaluated, and it is found that the average measurement error remains less than 13%.</description><identifier>ISSN: 0018-9456</identifier><identifier>EISSN: 1557-9662</identifier><identifier>DOI: 10.1109/TIM.2021.3115215</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Capacitance ; Drinking water ; Error analysis ; Ions ; Lead ; Loop gap resonator (LGR) ; Machine learning ; Metal ions ; metal ions in water ; Metals ; Microwave probes ; microwave sensor ; Onsite ; Pb contaminants ; Pb sensor ; Resonant frequency ; Resonators ; Sensors ; Support vector machines ; Water sampling</subject><ispartof>IEEE transactions on instrumentation and measurement, 2021, Vol.70, p.1-9</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-6a9df5c1b109bf74c41a0d25f6ba3491338ef97a77393ac7a0f0259de9a209413</citedby><cites>FETCH-LOGICAL-c333t-6a9df5c1b109bf74c41a0d25f6ba3491338ef97a77393ac7a0f0259de9a209413</cites><orcidid>0000-0001-6179-0091 ; 0000-0002-5313-1050 ; 0000-0002-8713-1411 ; 0000-0002-7704-5587 ; 0000-0002-2931-0518 ; 0000-0003-0023-7633 ; 0000-0003-3319-983X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9547301$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4010,27900,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9547301$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Oh, Sangmin</creatorcontrib><creatorcontrib>Hossen, Imtiaz</creatorcontrib><creatorcontrib>Luglio, Juan</creatorcontrib><creatorcontrib>Justin, Gusphyl</creatorcontrib><creatorcontrib>Richie, James E.</creatorcontrib><creatorcontrib>Medeiros, Henry</creatorcontrib><creatorcontrib>Lee, Chung Hoon</creatorcontrib><title>On-Site/In Situ Continuous Detecting ppb-Level Metal Ions in Drinking Water Using Block Loop-Gap Resonators and Machine Learning</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description>Microwave measurements and machine learning algorithms are presented to estimate metal ion concentrations in drinking water. A novel block loop gap resonator (BLGR) as a microwave probe is designed and fabricated to estimate Pb ion concentrations in city water as low as 1 ppb with an rms error of 0.18 ppb. No physical contact between the BLGR probe and the water sample allows on-site/in situ continuous detection of ppb-level metal ion concentrations. The <inline-formula> <tex-math notation="LaTeX">S_{11} </tex-math></inline-formula> raw data (amplitude and phase) from the BLGR are used to classify and estimate metal ion concentrations using a support vector regression algorithm. The performance of the proposed method to estimate Pb concentrations in the presence of interfering metal ions (Cu 2+ , Fe 3+ , and Zn 2+ ) is also evaluated, and it is found that the average measurement error remains less than 13%.</description><subject>Algorithms</subject><subject>Capacitance</subject><subject>Drinking water</subject><subject>Error analysis</subject><subject>Ions</subject><subject>Lead</subject><subject>Loop gap resonator (LGR)</subject><subject>Machine learning</subject><subject>Metal ions</subject><subject>metal ions in water</subject><subject>Metals</subject><subject>Microwave probes</subject><subject>microwave sensor</subject><subject>Onsite</subject><subject>Pb contaminants</subject><subject>Pb sensor</subject><subject>Resonant frequency</subject><subject>Resonators</subject><subject>Sensors</subject><subject>Support vector machines</subject><subject>Water sampling</subject><issn>0018-9456</issn><issn>1557-9662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMFLwzAUxoMoOKd3wUvAc7ekaZrmqFNnoWOgGx5L2r5qt5rUJBW8-afbsuHpew9-3_d4H0LXlMwoJXK-SVezkIR0xijlIeUnaEI5F4GM4_AUTQihSSAjHp-jC-d2hBARR2KCftc6eG08zFONB-3xwmjf6N70Dj-Ah3JY3nHXFUEG39DiFXjV4tRohxuNH2yj9yPwpjxYvHXjfN-aco8zY7pgqTr8As5o5Y11WOkKr1T50WjAGSirB_wSndWqdXB11CnaPj1uFs9Btl6mi7ssKBljPoiVrGpe0mL4tahFVEZUkSrkdVwoFknKWAK1FEoIJpkqhSI1CbmsQKqQyIiyKbo95HbWfPXgfL4zvdXDyTzkCeVxQslIkQNVWuOchTrvbPOp7E9OST72nA8952PP-bHnwXJzsDQA8I9LHgk2BP4Bh-541Q</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Oh, Sangmin</creator><creator>Hossen, Imtiaz</creator><creator>Luglio, Juan</creator><creator>Justin, Gusphyl</creator><creator>Richie, James E.</creator><creator>Medeiros, Henry</creator><creator>Lee, Chung Hoon</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6179-0091</orcidid><orcidid>https://orcid.org/0000-0002-5313-1050</orcidid><orcidid>https://orcid.org/0000-0002-8713-1411</orcidid><orcidid>https://orcid.org/0000-0002-7704-5587</orcidid><orcidid>https://orcid.org/0000-0002-2931-0518</orcidid><orcidid>https://orcid.org/0000-0003-0023-7633</orcidid><orcidid>https://orcid.org/0000-0003-3319-983X</orcidid></search><sort><creationdate>2021</creationdate><title>On-Site/In Situ Continuous Detecting ppb-Level Metal Ions in Drinking Water Using Block Loop-Gap Resonators and Machine Learning</title><author>Oh, Sangmin ; Hossen, Imtiaz ; Luglio, Juan ; Justin, Gusphyl ; Richie, James E. ; Medeiros, Henry ; Lee, Chung Hoon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-6a9df5c1b109bf74c41a0d25f6ba3491338ef97a77393ac7a0f0259de9a209413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Capacitance</topic><topic>Drinking water</topic><topic>Error analysis</topic><topic>Ions</topic><topic>Lead</topic><topic>Loop gap resonator (LGR)</topic><topic>Machine learning</topic><topic>Metal ions</topic><topic>metal ions in water</topic><topic>Metals</topic><topic>Microwave probes</topic><topic>microwave sensor</topic><topic>Onsite</topic><topic>Pb contaminants</topic><topic>Pb sensor</topic><topic>Resonant frequency</topic><topic>Resonators</topic><topic>Sensors</topic><topic>Support vector machines</topic><topic>Water sampling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oh, Sangmin</creatorcontrib><creatorcontrib>Hossen, Imtiaz</creatorcontrib><creatorcontrib>Luglio, Juan</creatorcontrib><creatorcontrib>Justin, Gusphyl</creatorcontrib><creatorcontrib>Richie, James E.</creatorcontrib><creatorcontrib>Medeiros, Henry</creatorcontrib><creatorcontrib>Lee, Chung Hoon</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Oh, Sangmin</au><au>Hossen, Imtiaz</au><au>Luglio, Juan</au><au>Justin, Gusphyl</au><au>Richie, James E.</au><au>Medeiros, Henry</au><au>Lee, Chung Hoon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On-Site/In Situ Continuous Detecting ppb-Level Metal Ions in Drinking Water Using Block Loop-Gap Resonators and Machine Learning</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>2021</date><risdate>2021</risdate><volume>70</volume><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>0018-9456</issn><eissn>1557-9662</eissn><coden>IEIMAO</coden><abstract>Microwave measurements and machine learning algorithms are presented to estimate metal ion concentrations in drinking water. A novel block loop gap resonator (BLGR) as a microwave probe is designed and fabricated to estimate Pb ion concentrations in city water as low as 1 ppb with an rms error of 0.18 ppb. No physical contact between the BLGR probe and the water sample allows on-site/in situ continuous detection of ppb-level metal ion concentrations. The <inline-formula> <tex-math notation="LaTeX">S_{11} </tex-math></inline-formula> raw data (amplitude and phase) from the BLGR are used to classify and estimate metal ion concentrations using a support vector regression algorithm. The performance of the proposed method to estimate Pb concentrations in the presence of interfering metal ions (Cu 2+ , Fe 3+ , and Zn 2+ ) is also evaluated, and it is found that the average measurement error remains less than 13%.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIM.2021.3115215</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-6179-0091</orcidid><orcidid>https://orcid.org/0000-0002-5313-1050</orcidid><orcidid>https://orcid.org/0000-0002-8713-1411</orcidid><orcidid>https://orcid.org/0000-0002-7704-5587</orcidid><orcidid>https://orcid.org/0000-0002-2931-0518</orcidid><orcidid>https://orcid.org/0000-0003-0023-7633</orcidid><orcidid>https://orcid.org/0000-0003-3319-983X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9456 |
ispartof | IEEE transactions on instrumentation and measurement, 2021, Vol.70, p.1-9 |
issn | 0018-9456 1557-9662 |
language | eng |
recordid | cdi_proquest_journals_2581568101 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Capacitance Drinking water Error analysis Ions Lead Loop gap resonator (LGR) Machine learning Metal ions metal ions in water Metals Microwave probes microwave sensor Onsite Pb contaminants Pb sensor Resonant frequency Resonators Sensors Support vector machines Water sampling |
title | On-Site/In Situ Continuous Detecting ppb-Level Metal Ions in Drinking Water Using Block Loop-Gap Resonators and Machine Learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T17%3A29%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On-Site/In%20Situ%20Continuous%20Detecting%20ppb-Level%20Metal%20Ions%20in%20Drinking%20Water%20Using%20Block%20Loop-Gap%20Resonators%20and%20Machine%20Learning&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Oh,%20Sangmin&rft.date=2021&rft.volume=70&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=0018-9456&rft.eissn=1557-9662&rft.coden=IEIMAO&rft_id=info:doi/10.1109/TIM.2021.3115215&rft_dat=%3Cproquest_RIE%3E2581568101%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2581568101&rft_id=info:pmid/&rft_ieee_id=9547301&rfr_iscdi=true |