Nacre-like ceramics-based phase change composites for concurrent efficient solar-to-thermal conversion and rapid energy storage
Directly absorbing sunlight and on-site storing thermal energy via phase change processes are promising to achieve efficient and fast solar-to-thermal energy storage. However, the performance is severely inhibited by intrinsically low thermal conductivity and poor optical absorption capability of ph...
Gespeichert in:
Veröffentlicht in: | Solar energy materials and solar cells 2021-09, Vol.230, p.111240, Article 111240 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 111240 |
container_title | Solar energy materials and solar cells |
container_volume | 230 |
creator | Liu, Xianglei Song, Yanan Xu, Qiao Luo, Qingyang Tian, Yang Dang, Chunzhuo Wang, Haolei Chen, Meng Xuan, Yimin Li, Yongliang Ding, Yulong |
description | Directly absorbing sunlight and on-site storing thermal energy via phase change processes are promising to achieve efficient and fast solar-to-thermal energy storage. However, the performance is severely inhibited by intrinsically low thermal conductivity and poor optical absorption capability of phase change materials (PCMs). We propose a strategy to achieve integrated efficient solar-to-thermal conversion and ultrafast energy storage by developing nacre-like ceramics embedded with titanium nitride (TiN) nanoparticles (NPs) contained PCMs. A high thermal conductivity of 25.63 W m−1 K−1 compatible with large phase change enthalpy of 157.93 kJ/kg are demonstrated. The excellent performance is attributed to ordered arrangement of silicon carbide ceramics and erythritol PCMs, just like microstructure of natural nacre. Meanwhile, the solar absorptance is improved by exciting localized plasmon resonances of TiN NPs in a broad band. Combination of high thermally conductive biomimetic skeletons with volumetric absorptive PCMs leads to a prominent enhancement of solar-to-thermal energy storage rate by 864%. This work paves a way for the application of ceramics in rapid and efficient solar energy harvesting and thermal energy storage.
[Display omitted]
•Nacre-like ceramics-based phase change composites are designed for solar thermal conversion and storage.•The thermal conductivity is 25.63 W/m-K due to ordered arrangement of SiC ceramics and PCMs.•Large phase change enthalpy of 157.93 kJ/kg are demonstrated with good leakage-proof properties.•High solar absorptance is enabled by decorating TiN nanoparticles on SiC skeletons.•Solar-to-thermal energy storage rate of biomimetic composites is successfully enhanced by 864%. |
doi_str_mv | 10.1016/j.solmat.2021.111240 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2581541715</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0927024821002841</els_id><sourcerecordid>2581541715</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-eb79ed91ce55464d5c094c27b42cf55ff84c1689ee081cb3f5018553894a3cb53</originalsourceid><addsrcrecordid>eNp9kEtr3DAUhUVpodO0_6ALQdaa6jmWN4ESkjQQkk26FrJ8NaPp2HKvNIGs-tdr46yzOvfCOffxEfJd8K3gYvfjuC35NPi6lVyKrRBCav6BbIRtWqZUaz-SDW9lw7jU9jP5UsqRcy53Sm_Iv0cfENgp_QEaAP2QQmGdL9DT6TALDQc_7mfJw5RLqlBozDi3YzgjwlgpxJhCWqr5CI-sZlYPgIM_La4XwJLySP3YU_RT6imMgPtXWmpGv4ev5FP0pwLf3vSC_L69eb7-xR6e7u6vfz6woJSuDLqmhb4VAYzRO92bwFsdZNNpGaIxMVodxM62ANyK0KlouLDGKNtqr0Jn1AW5XOdOmP-eoVR3zGcc55VOGiuMFo1YXHp1BcylIEQ3YRo8vjrB3YLaHd2K2i2o3Yp6jl2tMZg_eEmArixEAvQJIVTX5_T-gP-6xIui</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2581541715</pqid></control><display><type>article</type><title>Nacre-like ceramics-based phase change composites for concurrent efficient solar-to-thermal conversion and rapid energy storage</title><source>Elsevier ScienceDirect Journals</source><creator>Liu, Xianglei ; Song, Yanan ; Xu, Qiao ; Luo, Qingyang ; Tian, Yang ; Dang, Chunzhuo ; Wang, Haolei ; Chen, Meng ; Xuan, Yimin ; Li, Yongliang ; Ding, Yulong</creator><creatorcontrib>Liu, Xianglei ; Song, Yanan ; Xu, Qiao ; Luo, Qingyang ; Tian, Yang ; Dang, Chunzhuo ; Wang, Haolei ; Chen, Meng ; Xuan, Yimin ; Li, Yongliang ; Ding, Yulong</creatorcontrib><description>Directly absorbing sunlight and on-site storing thermal energy via phase change processes are promising to achieve efficient and fast solar-to-thermal energy storage. However, the performance is severely inhibited by intrinsically low thermal conductivity and poor optical absorption capability of phase change materials (PCMs). We propose a strategy to achieve integrated efficient solar-to-thermal conversion and ultrafast energy storage by developing nacre-like ceramics embedded with titanium nitride (TiN) nanoparticles (NPs) contained PCMs. A high thermal conductivity of 25.63 W m−1 K−1 compatible with large phase change enthalpy of 157.93 kJ/kg are demonstrated. The excellent performance is attributed to ordered arrangement of silicon carbide ceramics and erythritol PCMs, just like microstructure of natural nacre. Meanwhile, the solar absorptance is improved by exciting localized plasmon resonances of TiN NPs in a broad band. Combination of high thermally conductive biomimetic skeletons with volumetric absorptive PCMs leads to a prominent enhancement of solar-to-thermal energy storage rate by 864%. This work paves a way for the application of ceramics in rapid and efficient solar energy harvesting and thermal energy storage.
[Display omitted]
•Nacre-like ceramics-based phase change composites are designed for solar thermal conversion and storage.•The thermal conductivity is 25.63 W/m-K due to ordered arrangement of SiC ceramics and PCMs.•Large phase change enthalpy of 157.93 kJ/kg are demonstrated with good leakage-proof properties.•High solar absorptance is enabled by decorating TiN nanoparticles on SiC skeletons.•Solar-to-thermal energy storage rate of biomimetic composites is successfully enhanced by 864%.</description><identifier>ISSN: 0927-0248</identifier><identifier>EISSN: 1879-3398</identifier><identifier>DOI: 10.1016/j.solmat.2021.111240</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Absorptance ; Absorption ; Absorptivity ; Biomimetic ; Biomimetics ; Calcium carbonate ; Ceramics ; Conversion ; Energy harvesting ; Energy storage ; Enthalpy ; Erythritol ; Heat conductivity ; Heat transfer ; Nacre ; Nanoparticles ; Phase change materials ; Silicon carbide ; Solar absorption ; Solar energy ; Solar-to-thermal conversion ; Thermal conductivity ; Thermal energy ; Titanium ; Titanium nitride</subject><ispartof>Solar energy materials and solar cells, 2021-09, Vol.230, p.111240, Article 111240</ispartof><rights>2021 Elsevier B.V.</rights><rights>Copyright Elsevier BV Sep 15, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-eb79ed91ce55464d5c094c27b42cf55ff84c1689ee081cb3f5018553894a3cb53</citedby><cites>FETCH-LOGICAL-c334t-eb79ed91ce55464d5c094c27b42cf55ff84c1689ee081cb3f5018553894a3cb53</cites><orcidid>0000-0001-5647-5206 ; 0000-0001-8490-5349</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0927024821002841$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Liu, Xianglei</creatorcontrib><creatorcontrib>Song, Yanan</creatorcontrib><creatorcontrib>Xu, Qiao</creatorcontrib><creatorcontrib>Luo, Qingyang</creatorcontrib><creatorcontrib>Tian, Yang</creatorcontrib><creatorcontrib>Dang, Chunzhuo</creatorcontrib><creatorcontrib>Wang, Haolei</creatorcontrib><creatorcontrib>Chen, Meng</creatorcontrib><creatorcontrib>Xuan, Yimin</creatorcontrib><creatorcontrib>Li, Yongliang</creatorcontrib><creatorcontrib>Ding, Yulong</creatorcontrib><title>Nacre-like ceramics-based phase change composites for concurrent efficient solar-to-thermal conversion and rapid energy storage</title><title>Solar energy materials and solar cells</title><description>Directly absorbing sunlight and on-site storing thermal energy via phase change processes are promising to achieve efficient and fast solar-to-thermal energy storage. However, the performance is severely inhibited by intrinsically low thermal conductivity and poor optical absorption capability of phase change materials (PCMs). We propose a strategy to achieve integrated efficient solar-to-thermal conversion and ultrafast energy storage by developing nacre-like ceramics embedded with titanium nitride (TiN) nanoparticles (NPs) contained PCMs. A high thermal conductivity of 25.63 W m−1 K−1 compatible with large phase change enthalpy of 157.93 kJ/kg are demonstrated. The excellent performance is attributed to ordered arrangement of silicon carbide ceramics and erythritol PCMs, just like microstructure of natural nacre. Meanwhile, the solar absorptance is improved by exciting localized plasmon resonances of TiN NPs in a broad band. Combination of high thermally conductive biomimetic skeletons with volumetric absorptive PCMs leads to a prominent enhancement of solar-to-thermal energy storage rate by 864%. This work paves a way for the application of ceramics in rapid and efficient solar energy harvesting and thermal energy storage.
[Display omitted]
•Nacre-like ceramics-based phase change composites are designed for solar thermal conversion and storage.•The thermal conductivity is 25.63 W/m-K due to ordered arrangement of SiC ceramics and PCMs.•Large phase change enthalpy of 157.93 kJ/kg are demonstrated with good leakage-proof properties.•High solar absorptance is enabled by decorating TiN nanoparticles on SiC skeletons.•Solar-to-thermal energy storage rate of biomimetic composites is successfully enhanced by 864%.</description><subject>Absorptance</subject><subject>Absorption</subject><subject>Absorptivity</subject><subject>Biomimetic</subject><subject>Biomimetics</subject><subject>Calcium carbonate</subject><subject>Ceramics</subject><subject>Conversion</subject><subject>Energy harvesting</subject><subject>Energy storage</subject><subject>Enthalpy</subject><subject>Erythritol</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>Nacre</subject><subject>Nanoparticles</subject><subject>Phase change materials</subject><subject>Silicon carbide</subject><subject>Solar absorption</subject><subject>Solar energy</subject><subject>Solar-to-thermal conversion</subject><subject>Thermal conductivity</subject><subject>Thermal energy</subject><subject>Titanium</subject><subject>Titanium nitride</subject><issn>0927-0248</issn><issn>1879-3398</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kEtr3DAUhUVpodO0_6ALQdaa6jmWN4ESkjQQkk26FrJ8NaPp2HKvNIGs-tdr46yzOvfCOffxEfJd8K3gYvfjuC35NPi6lVyKrRBCav6BbIRtWqZUaz-SDW9lw7jU9jP5UsqRcy53Sm_Iv0cfENgp_QEaAP2QQmGdL9DT6TALDQc_7mfJw5RLqlBozDi3YzgjwlgpxJhCWqr5CI-sZlYPgIM_La4XwJLySP3YU_RT6imMgPtXWmpGv4ev5FP0pwLf3vSC_L69eb7-xR6e7u6vfz6woJSuDLqmhb4VAYzRO92bwFsdZNNpGaIxMVodxM62ANyK0KlouLDGKNtqr0Jn1AW5XOdOmP-eoVR3zGcc55VOGiuMFo1YXHp1BcylIEQ3YRo8vjrB3YLaHd2K2i2o3Yp6jl2tMZg_eEmArixEAvQJIVTX5_T-gP-6xIui</recordid><startdate>20210915</startdate><enddate>20210915</enddate><creator>Liu, Xianglei</creator><creator>Song, Yanan</creator><creator>Xu, Qiao</creator><creator>Luo, Qingyang</creator><creator>Tian, Yang</creator><creator>Dang, Chunzhuo</creator><creator>Wang, Haolei</creator><creator>Chen, Meng</creator><creator>Xuan, Yimin</creator><creator>Li, Yongliang</creator><creator>Ding, Yulong</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-5647-5206</orcidid><orcidid>https://orcid.org/0000-0001-8490-5349</orcidid></search><sort><creationdate>20210915</creationdate><title>Nacre-like ceramics-based phase change composites for concurrent efficient solar-to-thermal conversion and rapid energy storage</title><author>Liu, Xianglei ; Song, Yanan ; Xu, Qiao ; Luo, Qingyang ; Tian, Yang ; Dang, Chunzhuo ; Wang, Haolei ; Chen, Meng ; Xuan, Yimin ; Li, Yongliang ; Ding, Yulong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-eb79ed91ce55464d5c094c27b42cf55ff84c1689ee081cb3f5018553894a3cb53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Absorptance</topic><topic>Absorption</topic><topic>Absorptivity</topic><topic>Biomimetic</topic><topic>Biomimetics</topic><topic>Calcium carbonate</topic><topic>Ceramics</topic><topic>Conversion</topic><topic>Energy harvesting</topic><topic>Energy storage</topic><topic>Enthalpy</topic><topic>Erythritol</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>Nacre</topic><topic>Nanoparticles</topic><topic>Phase change materials</topic><topic>Silicon carbide</topic><topic>Solar absorption</topic><topic>Solar energy</topic><topic>Solar-to-thermal conversion</topic><topic>Thermal conductivity</topic><topic>Thermal energy</topic><topic>Titanium</topic><topic>Titanium nitride</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Xianglei</creatorcontrib><creatorcontrib>Song, Yanan</creatorcontrib><creatorcontrib>Xu, Qiao</creatorcontrib><creatorcontrib>Luo, Qingyang</creatorcontrib><creatorcontrib>Tian, Yang</creatorcontrib><creatorcontrib>Dang, Chunzhuo</creatorcontrib><creatorcontrib>Wang, Haolei</creatorcontrib><creatorcontrib>Chen, Meng</creatorcontrib><creatorcontrib>Xuan, Yimin</creatorcontrib><creatorcontrib>Li, Yongliang</creatorcontrib><creatorcontrib>Ding, Yulong</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Solar energy materials and solar cells</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Xianglei</au><au>Song, Yanan</au><au>Xu, Qiao</au><au>Luo, Qingyang</au><au>Tian, Yang</au><au>Dang, Chunzhuo</au><au>Wang, Haolei</au><au>Chen, Meng</au><au>Xuan, Yimin</au><au>Li, Yongliang</au><au>Ding, Yulong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nacre-like ceramics-based phase change composites for concurrent efficient solar-to-thermal conversion and rapid energy storage</atitle><jtitle>Solar energy materials and solar cells</jtitle><date>2021-09-15</date><risdate>2021</risdate><volume>230</volume><spage>111240</spage><pages>111240-</pages><artnum>111240</artnum><issn>0927-0248</issn><eissn>1879-3398</eissn><abstract>Directly absorbing sunlight and on-site storing thermal energy via phase change processes are promising to achieve efficient and fast solar-to-thermal energy storage. However, the performance is severely inhibited by intrinsically low thermal conductivity and poor optical absorption capability of phase change materials (PCMs). We propose a strategy to achieve integrated efficient solar-to-thermal conversion and ultrafast energy storage by developing nacre-like ceramics embedded with titanium nitride (TiN) nanoparticles (NPs) contained PCMs. A high thermal conductivity of 25.63 W m−1 K−1 compatible with large phase change enthalpy of 157.93 kJ/kg are demonstrated. The excellent performance is attributed to ordered arrangement of silicon carbide ceramics and erythritol PCMs, just like microstructure of natural nacre. Meanwhile, the solar absorptance is improved by exciting localized plasmon resonances of TiN NPs in a broad band. Combination of high thermally conductive biomimetic skeletons with volumetric absorptive PCMs leads to a prominent enhancement of solar-to-thermal energy storage rate by 864%. This work paves a way for the application of ceramics in rapid and efficient solar energy harvesting and thermal energy storage.
[Display omitted]
•Nacre-like ceramics-based phase change composites are designed for solar thermal conversion and storage.•The thermal conductivity is 25.63 W/m-K due to ordered arrangement of SiC ceramics and PCMs.•Large phase change enthalpy of 157.93 kJ/kg are demonstrated with good leakage-proof properties.•High solar absorptance is enabled by decorating TiN nanoparticles on SiC skeletons.•Solar-to-thermal energy storage rate of biomimetic composites is successfully enhanced by 864%.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.solmat.2021.111240</doi><orcidid>https://orcid.org/0000-0001-5647-5206</orcidid><orcidid>https://orcid.org/0000-0001-8490-5349</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0927-0248 |
ispartof | Solar energy materials and solar cells, 2021-09, Vol.230, p.111240, Article 111240 |
issn | 0927-0248 1879-3398 |
language | eng |
recordid | cdi_proquest_journals_2581541715 |
source | Elsevier ScienceDirect Journals |
subjects | Absorptance Absorption Absorptivity Biomimetic Biomimetics Calcium carbonate Ceramics Conversion Energy harvesting Energy storage Enthalpy Erythritol Heat conductivity Heat transfer Nacre Nanoparticles Phase change materials Silicon carbide Solar absorption Solar energy Solar-to-thermal conversion Thermal conductivity Thermal energy Titanium Titanium nitride |
title | Nacre-like ceramics-based phase change composites for concurrent efficient solar-to-thermal conversion and rapid energy storage |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T15%3A46%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nacre-like%20ceramics-based%20phase%20change%20composites%20for%20concurrent%20efficient%20solar-to-thermal%20conversion%20and%20rapid%20energy%20storage&rft.jtitle=Solar%20energy%20materials%20and%20solar%20cells&rft.au=Liu,%20Xianglei&rft.date=2021-09-15&rft.volume=230&rft.spage=111240&rft.pages=111240-&rft.artnum=111240&rft.issn=0927-0248&rft.eissn=1879-3398&rft_id=info:doi/10.1016/j.solmat.2021.111240&rft_dat=%3Cproquest_cross%3E2581541715%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2581541715&rft_id=info:pmid/&rft_els_id=S0927024821002841&rfr_iscdi=true |