Nacre-like ceramics-based phase change composites for concurrent efficient solar-to-thermal conversion and rapid energy storage

Directly absorbing sunlight and on-site storing thermal energy via phase change processes are promising to achieve efficient and fast solar-to-thermal energy storage. However, the performance is severely inhibited by intrinsically low thermal conductivity and poor optical absorption capability of ph...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Solar energy materials and solar cells 2021-09, Vol.230, p.111240, Article 111240
Hauptverfasser: Liu, Xianglei, Song, Yanan, Xu, Qiao, Luo, Qingyang, Tian, Yang, Dang, Chunzhuo, Wang, Haolei, Chen, Meng, Xuan, Yimin, Li, Yongliang, Ding, Yulong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 111240
container_title Solar energy materials and solar cells
container_volume 230
creator Liu, Xianglei
Song, Yanan
Xu, Qiao
Luo, Qingyang
Tian, Yang
Dang, Chunzhuo
Wang, Haolei
Chen, Meng
Xuan, Yimin
Li, Yongliang
Ding, Yulong
description Directly absorbing sunlight and on-site storing thermal energy via phase change processes are promising to achieve efficient and fast solar-to-thermal energy storage. However, the performance is severely inhibited by intrinsically low thermal conductivity and poor optical absorption capability of phase change materials (PCMs). We propose a strategy to achieve integrated efficient solar-to-thermal conversion and ultrafast energy storage by developing nacre-like ceramics embedded with titanium nitride (TiN) nanoparticles (NPs) contained PCMs. A high thermal conductivity of 25.63 W m−1 K−1 compatible with large phase change enthalpy of 157.93 kJ/kg are demonstrated. The excellent performance is attributed to ordered arrangement of silicon carbide ceramics and erythritol PCMs, just like microstructure of natural nacre. Meanwhile, the solar absorptance is improved by exciting localized plasmon resonances of TiN NPs in a broad band. Combination of high thermally conductive biomimetic skeletons with volumetric absorptive PCMs leads to a prominent enhancement of solar-to-thermal energy storage rate by 864%. This work paves a way for the application of ceramics in rapid and efficient solar energy harvesting and thermal energy storage. [Display omitted] •Nacre-like ceramics-based phase change composites are designed for solar thermal conversion and storage.•The thermal conductivity is 25.63 W/m-K due to ordered arrangement of SiC ceramics and PCMs.•Large phase change enthalpy of 157.93 kJ/kg are demonstrated with good leakage-proof properties.•High solar absorptance is enabled by decorating TiN nanoparticles on SiC skeletons.•Solar-to-thermal energy storage rate of biomimetic composites is successfully enhanced by 864%.
doi_str_mv 10.1016/j.solmat.2021.111240
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2581541715</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0927024821002841</els_id><sourcerecordid>2581541715</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-eb79ed91ce55464d5c094c27b42cf55ff84c1689ee081cb3f5018553894a3cb53</originalsourceid><addsrcrecordid>eNp9kEtr3DAUhUVpodO0_6ALQdaa6jmWN4ESkjQQkk26FrJ8NaPp2HKvNIGs-tdr46yzOvfCOffxEfJd8K3gYvfjuC35NPi6lVyKrRBCav6BbIRtWqZUaz-SDW9lw7jU9jP5UsqRcy53Sm_Iv0cfENgp_QEaAP2QQmGdL9DT6TALDQc_7mfJw5RLqlBozDi3YzgjwlgpxJhCWqr5CI-sZlYPgIM_La4XwJLySP3YU_RT6imMgPtXWmpGv4ev5FP0pwLf3vSC_L69eb7-xR6e7u6vfz6woJSuDLqmhb4VAYzRO92bwFsdZNNpGaIxMVodxM62ANyK0KlouLDGKNtqr0Jn1AW5XOdOmP-eoVR3zGcc55VOGiuMFo1YXHp1BcylIEQ3YRo8vjrB3YLaHd2K2i2o3Yp6jl2tMZg_eEmArixEAvQJIVTX5_T-gP-6xIui</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2581541715</pqid></control><display><type>article</type><title>Nacre-like ceramics-based phase change composites for concurrent efficient solar-to-thermal conversion and rapid energy storage</title><source>Elsevier ScienceDirect Journals</source><creator>Liu, Xianglei ; Song, Yanan ; Xu, Qiao ; Luo, Qingyang ; Tian, Yang ; Dang, Chunzhuo ; Wang, Haolei ; Chen, Meng ; Xuan, Yimin ; Li, Yongliang ; Ding, Yulong</creator><creatorcontrib>Liu, Xianglei ; Song, Yanan ; Xu, Qiao ; Luo, Qingyang ; Tian, Yang ; Dang, Chunzhuo ; Wang, Haolei ; Chen, Meng ; Xuan, Yimin ; Li, Yongliang ; Ding, Yulong</creatorcontrib><description>Directly absorbing sunlight and on-site storing thermal energy via phase change processes are promising to achieve efficient and fast solar-to-thermal energy storage. However, the performance is severely inhibited by intrinsically low thermal conductivity and poor optical absorption capability of phase change materials (PCMs). We propose a strategy to achieve integrated efficient solar-to-thermal conversion and ultrafast energy storage by developing nacre-like ceramics embedded with titanium nitride (TiN) nanoparticles (NPs) contained PCMs. A high thermal conductivity of 25.63 W m−1 K−1 compatible with large phase change enthalpy of 157.93 kJ/kg are demonstrated. The excellent performance is attributed to ordered arrangement of silicon carbide ceramics and erythritol PCMs, just like microstructure of natural nacre. Meanwhile, the solar absorptance is improved by exciting localized plasmon resonances of TiN NPs in a broad band. Combination of high thermally conductive biomimetic skeletons with volumetric absorptive PCMs leads to a prominent enhancement of solar-to-thermal energy storage rate by 864%. This work paves a way for the application of ceramics in rapid and efficient solar energy harvesting and thermal energy storage. [Display omitted] •Nacre-like ceramics-based phase change composites are designed for solar thermal conversion and storage.•The thermal conductivity is 25.63 W/m-K due to ordered arrangement of SiC ceramics and PCMs.•Large phase change enthalpy of 157.93 kJ/kg are demonstrated with good leakage-proof properties.•High solar absorptance is enabled by decorating TiN nanoparticles on SiC skeletons.•Solar-to-thermal energy storage rate of biomimetic composites is successfully enhanced by 864%.</description><identifier>ISSN: 0927-0248</identifier><identifier>EISSN: 1879-3398</identifier><identifier>DOI: 10.1016/j.solmat.2021.111240</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Absorptance ; Absorption ; Absorptivity ; Biomimetic ; Biomimetics ; Calcium carbonate ; Ceramics ; Conversion ; Energy harvesting ; Energy storage ; Enthalpy ; Erythritol ; Heat conductivity ; Heat transfer ; Nacre ; Nanoparticles ; Phase change materials ; Silicon carbide ; Solar absorption ; Solar energy ; Solar-to-thermal conversion ; Thermal conductivity ; Thermal energy ; Titanium ; Titanium nitride</subject><ispartof>Solar energy materials and solar cells, 2021-09, Vol.230, p.111240, Article 111240</ispartof><rights>2021 Elsevier B.V.</rights><rights>Copyright Elsevier BV Sep 15, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-eb79ed91ce55464d5c094c27b42cf55ff84c1689ee081cb3f5018553894a3cb53</citedby><cites>FETCH-LOGICAL-c334t-eb79ed91ce55464d5c094c27b42cf55ff84c1689ee081cb3f5018553894a3cb53</cites><orcidid>0000-0001-5647-5206 ; 0000-0001-8490-5349</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0927024821002841$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Liu, Xianglei</creatorcontrib><creatorcontrib>Song, Yanan</creatorcontrib><creatorcontrib>Xu, Qiao</creatorcontrib><creatorcontrib>Luo, Qingyang</creatorcontrib><creatorcontrib>Tian, Yang</creatorcontrib><creatorcontrib>Dang, Chunzhuo</creatorcontrib><creatorcontrib>Wang, Haolei</creatorcontrib><creatorcontrib>Chen, Meng</creatorcontrib><creatorcontrib>Xuan, Yimin</creatorcontrib><creatorcontrib>Li, Yongliang</creatorcontrib><creatorcontrib>Ding, Yulong</creatorcontrib><title>Nacre-like ceramics-based phase change composites for concurrent efficient solar-to-thermal conversion and rapid energy storage</title><title>Solar energy materials and solar cells</title><description>Directly absorbing sunlight and on-site storing thermal energy via phase change processes are promising to achieve efficient and fast solar-to-thermal energy storage. However, the performance is severely inhibited by intrinsically low thermal conductivity and poor optical absorption capability of phase change materials (PCMs). We propose a strategy to achieve integrated efficient solar-to-thermal conversion and ultrafast energy storage by developing nacre-like ceramics embedded with titanium nitride (TiN) nanoparticles (NPs) contained PCMs. A high thermal conductivity of 25.63 W m−1 K−1 compatible with large phase change enthalpy of 157.93 kJ/kg are demonstrated. The excellent performance is attributed to ordered arrangement of silicon carbide ceramics and erythritol PCMs, just like microstructure of natural nacre. Meanwhile, the solar absorptance is improved by exciting localized plasmon resonances of TiN NPs in a broad band. Combination of high thermally conductive biomimetic skeletons with volumetric absorptive PCMs leads to a prominent enhancement of solar-to-thermal energy storage rate by 864%. This work paves a way for the application of ceramics in rapid and efficient solar energy harvesting and thermal energy storage. [Display omitted] •Nacre-like ceramics-based phase change composites are designed for solar thermal conversion and storage.•The thermal conductivity is 25.63 W/m-K due to ordered arrangement of SiC ceramics and PCMs.•Large phase change enthalpy of 157.93 kJ/kg are demonstrated with good leakage-proof properties.•High solar absorptance is enabled by decorating TiN nanoparticles on SiC skeletons.•Solar-to-thermal energy storage rate of biomimetic composites is successfully enhanced by 864%.</description><subject>Absorptance</subject><subject>Absorption</subject><subject>Absorptivity</subject><subject>Biomimetic</subject><subject>Biomimetics</subject><subject>Calcium carbonate</subject><subject>Ceramics</subject><subject>Conversion</subject><subject>Energy harvesting</subject><subject>Energy storage</subject><subject>Enthalpy</subject><subject>Erythritol</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>Nacre</subject><subject>Nanoparticles</subject><subject>Phase change materials</subject><subject>Silicon carbide</subject><subject>Solar absorption</subject><subject>Solar energy</subject><subject>Solar-to-thermal conversion</subject><subject>Thermal conductivity</subject><subject>Thermal energy</subject><subject>Titanium</subject><subject>Titanium nitride</subject><issn>0927-0248</issn><issn>1879-3398</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kEtr3DAUhUVpodO0_6ALQdaa6jmWN4ESkjQQkk26FrJ8NaPp2HKvNIGs-tdr46yzOvfCOffxEfJd8K3gYvfjuC35NPi6lVyKrRBCav6BbIRtWqZUaz-SDW9lw7jU9jP5UsqRcy53Sm_Iv0cfENgp_QEaAP2QQmGdL9DT6TALDQc_7mfJw5RLqlBozDi3YzgjwlgpxJhCWqr5CI-sZlYPgIM_La4XwJLySP3YU_RT6imMgPtXWmpGv4ev5FP0pwLf3vSC_L69eb7-xR6e7u6vfz6woJSuDLqmhb4VAYzRO92bwFsdZNNpGaIxMVodxM62ANyK0KlouLDGKNtqr0Jn1AW5XOdOmP-eoVR3zGcc55VOGiuMFo1YXHp1BcylIEQ3YRo8vjrB3YLaHd2K2i2o3Yp6jl2tMZg_eEmArixEAvQJIVTX5_T-gP-6xIui</recordid><startdate>20210915</startdate><enddate>20210915</enddate><creator>Liu, Xianglei</creator><creator>Song, Yanan</creator><creator>Xu, Qiao</creator><creator>Luo, Qingyang</creator><creator>Tian, Yang</creator><creator>Dang, Chunzhuo</creator><creator>Wang, Haolei</creator><creator>Chen, Meng</creator><creator>Xuan, Yimin</creator><creator>Li, Yongliang</creator><creator>Ding, Yulong</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-5647-5206</orcidid><orcidid>https://orcid.org/0000-0001-8490-5349</orcidid></search><sort><creationdate>20210915</creationdate><title>Nacre-like ceramics-based phase change composites for concurrent efficient solar-to-thermal conversion and rapid energy storage</title><author>Liu, Xianglei ; Song, Yanan ; Xu, Qiao ; Luo, Qingyang ; Tian, Yang ; Dang, Chunzhuo ; Wang, Haolei ; Chen, Meng ; Xuan, Yimin ; Li, Yongliang ; Ding, Yulong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-eb79ed91ce55464d5c094c27b42cf55ff84c1689ee081cb3f5018553894a3cb53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Absorptance</topic><topic>Absorption</topic><topic>Absorptivity</topic><topic>Biomimetic</topic><topic>Biomimetics</topic><topic>Calcium carbonate</topic><topic>Ceramics</topic><topic>Conversion</topic><topic>Energy harvesting</topic><topic>Energy storage</topic><topic>Enthalpy</topic><topic>Erythritol</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>Nacre</topic><topic>Nanoparticles</topic><topic>Phase change materials</topic><topic>Silicon carbide</topic><topic>Solar absorption</topic><topic>Solar energy</topic><topic>Solar-to-thermal conversion</topic><topic>Thermal conductivity</topic><topic>Thermal energy</topic><topic>Titanium</topic><topic>Titanium nitride</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Xianglei</creatorcontrib><creatorcontrib>Song, Yanan</creatorcontrib><creatorcontrib>Xu, Qiao</creatorcontrib><creatorcontrib>Luo, Qingyang</creatorcontrib><creatorcontrib>Tian, Yang</creatorcontrib><creatorcontrib>Dang, Chunzhuo</creatorcontrib><creatorcontrib>Wang, Haolei</creatorcontrib><creatorcontrib>Chen, Meng</creatorcontrib><creatorcontrib>Xuan, Yimin</creatorcontrib><creatorcontrib>Li, Yongliang</creatorcontrib><creatorcontrib>Ding, Yulong</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Solar energy materials and solar cells</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Xianglei</au><au>Song, Yanan</au><au>Xu, Qiao</au><au>Luo, Qingyang</au><au>Tian, Yang</au><au>Dang, Chunzhuo</au><au>Wang, Haolei</au><au>Chen, Meng</au><au>Xuan, Yimin</au><au>Li, Yongliang</au><au>Ding, Yulong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nacre-like ceramics-based phase change composites for concurrent efficient solar-to-thermal conversion and rapid energy storage</atitle><jtitle>Solar energy materials and solar cells</jtitle><date>2021-09-15</date><risdate>2021</risdate><volume>230</volume><spage>111240</spage><pages>111240-</pages><artnum>111240</artnum><issn>0927-0248</issn><eissn>1879-3398</eissn><abstract>Directly absorbing sunlight and on-site storing thermal energy via phase change processes are promising to achieve efficient and fast solar-to-thermal energy storage. However, the performance is severely inhibited by intrinsically low thermal conductivity and poor optical absorption capability of phase change materials (PCMs). We propose a strategy to achieve integrated efficient solar-to-thermal conversion and ultrafast energy storage by developing nacre-like ceramics embedded with titanium nitride (TiN) nanoparticles (NPs) contained PCMs. A high thermal conductivity of 25.63 W m−1 K−1 compatible with large phase change enthalpy of 157.93 kJ/kg are demonstrated. The excellent performance is attributed to ordered arrangement of silicon carbide ceramics and erythritol PCMs, just like microstructure of natural nacre. Meanwhile, the solar absorptance is improved by exciting localized plasmon resonances of TiN NPs in a broad band. Combination of high thermally conductive biomimetic skeletons with volumetric absorptive PCMs leads to a prominent enhancement of solar-to-thermal energy storage rate by 864%. This work paves a way for the application of ceramics in rapid and efficient solar energy harvesting and thermal energy storage. [Display omitted] •Nacre-like ceramics-based phase change composites are designed for solar thermal conversion and storage.•The thermal conductivity is 25.63 W/m-K due to ordered arrangement of SiC ceramics and PCMs.•Large phase change enthalpy of 157.93 kJ/kg are demonstrated with good leakage-proof properties.•High solar absorptance is enabled by decorating TiN nanoparticles on SiC skeletons.•Solar-to-thermal energy storage rate of biomimetic composites is successfully enhanced by 864%.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.solmat.2021.111240</doi><orcidid>https://orcid.org/0000-0001-5647-5206</orcidid><orcidid>https://orcid.org/0000-0001-8490-5349</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0927-0248
ispartof Solar energy materials and solar cells, 2021-09, Vol.230, p.111240, Article 111240
issn 0927-0248
1879-3398
language eng
recordid cdi_proquest_journals_2581541715
source Elsevier ScienceDirect Journals
subjects Absorptance
Absorption
Absorptivity
Biomimetic
Biomimetics
Calcium carbonate
Ceramics
Conversion
Energy harvesting
Energy storage
Enthalpy
Erythritol
Heat conductivity
Heat transfer
Nacre
Nanoparticles
Phase change materials
Silicon carbide
Solar absorption
Solar energy
Solar-to-thermal conversion
Thermal conductivity
Thermal energy
Titanium
Titanium nitride
title Nacre-like ceramics-based phase change composites for concurrent efficient solar-to-thermal conversion and rapid energy storage
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T15%3A46%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nacre-like%20ceramics-based%20phase%20change%20composites%20for%20concurrent%20efficient%20solar-to-thermal%20conversion%20and%20rapid%20energy%20storage&rft.jtitle=Solar%20energy%20materials%20and%20solar%20cells&rft.au=Liu,%20Xianglei&rft.date=2021-09-15&rft.volume=230&rft.spage=111240&rft.pages=111240-&rft.artnum=111240&rft.issn=0927-0248&rft.eissn=1879-3398&rft_id=info:doi/10.1016/j.solmat.2021.111240&rft_dat=%3Cproquest_cross%3E2581541715%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2581541715&rft_id=info:pmid/&rft_els_id=S0927024821002841&rfr_iscdi=true