A comparative life cycle assessment of silicon PV modules: Impact of module design, manufacturing location and inventory

Life Cycle Assessments (LCA) of single-crystalline silicon (sc-Si) photovoltaic (PV) systems often disregard novel module designs (e.g. glass-glass modules) and the fast pace of improvements in production. This study closes this research gap by comparing the environmental impacts of sc-Si glass-back...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Solar energy materials and solar cells 2021-09, Vol.230, p.111277, Article 111277
Hauptverfasser: Müller, Amelie, Friedrich, Lorenz, Reichel, Christian, Herceg, Sina, Mittag, Max, Neuhaus, Dirk Holger
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 111277
container_title Solar energy materials and solar cells
container_volume 230
creator Müller, Amelie
Friedrich, Lorenz
Reichel, Christian
Herceg, Sina
Mittag, Max
Neuhaus, Dirk Holger
description Life Cycle Assessments (LCA) of single-crystalline silicon (sc-Si) photovoltaic (PV) systems often disregard novel module designs (e.g. glass-glass modules) and the fast pace of improvements in production. This study closes this research gap by comparing the environmental impacts of sc-Si glass-backsheet and glass-glass modules produced in China, Germany and the European Union (EU), using current inventory data. Results show lower potential environmental impacts for glass-glass compared to glass-backsheet modules and lower impacts for production in the EU and Germany compared to China for most impact categories. Concerning climate change, glass-backsheet (glass-glass) modules produced in China, Germany or the EU are linked to emissions of 810 (750), 580 (520) and 480 (420) kg CO2-eq/kWp, respectively. This corresponds to CO2-eq emission reductions of 30% for German and 40% for European production compared to Chinese production, and 8–12.5% reduction in glass-glass compared to glass-backsheet modules. Carbon intensity of produced electricity, excluding balance of system (BOS), amounts to 13–30 g CO2-eq/kWh, depending on production location and electricity yield calculation method. A warranty-based yield calculation method shows the influence of different lifetime electricity yields of glass-glass and glass-backsheet modules on the potential environmental impacts. This study identifies module efficiency, energy requirements, silicon consumption and carbon-intensity of electricity during production as significant levers for future reductions of environmental impacts. It emphasizes the importance of up-to-date inventories and current modelling of electricity mixes for representative LCA results of PV modules. Lastly, this paper argues that more differentiated methodological guidelines are needed to incentivize the development of sustainable module designs. [Display omitted] •Single-Si glass-glass modules show lower impacts than glass-backsheet modules.•Most impacts lowest for module production in EU, followed by Germany and China.•Comparison of influence of different life cycle inventory datasets on results.•Proposal of warranty-based yield calculation method for more exact impacts per kWh.•Call for differentiated LCA guidelines to support sustainable panel designs.
doi_str_mv 10.1016/j.solmat.2021.111277
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2581541468</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0927024821003202</els_id><sourcerecordid>2581541468</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-4e3c19976f3a2c6db878ed1c4a439c95f55d2bcc83b0149d9fc879a3e865155c3</originalsourceid><addsrcrecordid>eNp9kM1r3DAQxUVJoZu0_0EPglzrjb5sSzkUQujHQqA9tL0K7WgctNjSRrKX7n9fJe45p4GZ997wfoR85GzLGe9uDtuSxsnNW8EE33LORd-_IRuue9NIafQF2TAj-oYJpd-Ry1IOjDHRSbUhf-8opOnospvDCekYBqRwhhGpKwVLmTDONA20hDFAivTnHzolv4xYbumu-uDluq6oxxIe4yc6ubgM9bTkEB_pmKCGV6-LnoZ4qokpn9-Tt4MbC374P6_I769fft1_bx5-fNvd3z00IKWaG4USuDF9N0gnoPN73Wv0HJRT0oBph7b1Yg-g5Z5xZbwZoLZ2EnXX8rYFeUWu19xjTk8Lltke0pJjfWlFq3mruOp0ValVBTmVknGwxxwml8-WM_vM2B7sytg-M7Yr42r7vNqwNjgFzLZAwAjoQ0aYrU_h9YB_n9CIoA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2581541468</pqid></control><display><type>article</type><title>A comparative life cycle assessment of silicon PV modules: Impact of module design, manufacturing location and inventory</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Müller, Amelie ; Friedrich, Lorenz ; Reichel, Christian ; Herceg, Sina ; Mittag, Max ; Neuhaus, Dirk Holger</creator><creatorcontrib>Müller, Amelie ; Friedrich, Lorenz ; Reichel, Christian ; Herceg, Sina ; Mittag, Max ; Neuhaus, Dirk Holger</creatorcontrib><description>Life Cycle Assessments (LCA) of single-crystalline silicon (sc-Si) photovoltaic (PV) systems often disregard novel module designs (e.g. glass-glass modules) and the fast pace of improvements in production. This study closes this research gap by comparing the environmental impacts of sc-Si glass-backsheet and glass-glass modules produced in China, Germany and the European Union (EU), using current inventory data. Results show lower potential environmental impacts for glass-glass compared to glass-backsheet modules and lower impacts for production in the EU and Germany compared to China for most impact categories. Concerning climate change, glass-backsheet (glass-glass) modules produced in China, Germany or the EU are linked to emissions of 810 (750), 580 (520) and 480 (420) kg CO2-eq/kWp, respectively. This corresponds to CO2-eq emission reductions of 30% for German and 40% for European production compared to Chinese production, and 8–12.5% reduction in glass-glass compared to glass-backsheet modules. Carbon intensity of produced electricity, excluding balance of system (BOS), amounts to 13–30 g CO2-eq/kWh, depending on production location and electricity yield calculation method. A warranty-based yield calculation method shows the influence of different lifetime electricity yields of glass-glass and glass-backsheet modules on the potential environmental impacts. This study identifies module efficiency, energy requirements, silicon consumption and carbon-intensity of electricity during production as significant levers for future reductions of environmental impacts. It emphasizes the importance of up-to-date inventories and current modelling of electricity mixes for representative LCA results of PV modules. Lastly, this paper argues that more differentiated methodological guidelines are needed to incentivize the development of sustainable module designs. [Display omitted] •Single-Si glass-glass modules show lower impacts than glass-backsheet modules.•Most impacts lowest for module production in EU, followed by Germany and China.•Comparison of influence of different life cycle inventory datasets on results.•Proposal of warranty-based yield calculation method for more exact impacts per kWh.•Call for differentiated LCA guidelines to support sustainable panel designs.</description><identifier>ISSN: 0927-0248</identifier><identifier>EISSN: 1879-3398</identifier><identifier>DOI: 10.1016/j.solmat.2021.111277</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Carbon dioxide ; Climate change ; Electricity ; Emissions control ; Energy requirements ; Environmental impact ; Glass-glass module ; Life cycle analysis ; Life cycle assessment ; Life cycle inventory ; Life cycles ; Modules ; Photovoltaic cells ; Photovoltaics ; Silicon ; Single crystals ; Single-crystalline silicon ; Sustainable development ; Yield</subject><ispartof>Solar energy materials and solar cells, 2021-09, Vol.230, p.111277, Article 111277</ispartof><rights>2021</rights><rights>Copyright Elsevier BV Sep 15, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-4e3c19976f3a2c6db878ed1c4a439c95f55d2bcc83b0149d9fc879a3e865155c3</citedby><cites>FETCH-LOGICAL-c334t-4e3c19976f3a2c6db878ed1c4a439c95f55d2bcc83b0149d9fc879a3e865155c3</cites><orcidid>0000-0002-8999-6339</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.solmat.2021.111277$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Müller, Amelie</creatorcontrib><creatorcontrib>Friedrich, Lorenz</creatorcontrib><creatorcontrib>Reichel, Christian</creatorcontrib><creatorcontrib>Herceg, Sina</creatorcontrib><creatorcontrib>Mittag, Max</creatorcontrib><creatorcontrib>Neuhaus, Dirk Holger</creatorcontrib><title>A comparative life cycle assessment of silicon PV modules: Impact of module design, manufacturing location and inventory</title><title>Solar energy materials and solar cells</title><description>Life Cycle Assessments (LCA) of single-crystalline silicon (sc-Si) photovoltaic (PV) systems often disregard novel module designs (e.g. glass-glass modules) and the fast pace of improvements in production. This study closes this research gap by comparing the environmental impacts of sc-Si glass-backsheet and glass-glass modules produced in China, Germany and the European Union (EU), using current inventory data. Results show lower potential environmental impacts for glass-glass compared to glass-backsheet modules and lower impacts for production in the EU and Germany compared to China for most impact categories. Concerning climate change, glass-backsheet (glass-glass) modules produced in China, Germany or the EU are linked to emissions of 810 (750), 580 (520) and 480 (420) kg CO2-eq/kWp, respectively. This corresponds to CO2-eq emission reductions of 30% for German and 40% for European production compared to Chinese production, and 8–12.5% reduction in glass-glass compared to glass-backsheet modules. Carbon intensity of produced electricity, excluding balance of system (BOS), amounts to 13–30 g CO2-eq/kWh, depending on production location and electricity yield calculation method. A warranty-based yield calculation method shows the influence of different lifetime electricity yields of glass-glass and glass-backsheet modules on the potential environmental impacts. This study identifies module efficiency, energy requirements, silicon consumption and carbon-intensity of electricity during production as significant levers for future reductions of environmental impacts. It emphasizes the importance of up-to-date inventories and current modelling of electricity mixes for representative LCA results of PV modules. Lastly, this paper argues that more differentiated methodological guidelines are needed to incentivize the development of sustainable module designs. [Display omitted] •Single-Si glass-glass modules show lower impacts than glass-backsheet modules.•Most impacts lowest for module production in EU, followed by Germany and China.•Comparison of influence of different life cycle inventory datasets on results.•Proposal of warranty-based yield calculation method for more exact impacts per kWh.•Call for differentiated LCA guidelines to support sustainable panel designs.</description><subject>Carbon dioxide</subject><subject>Climate change</subject><subject>Electricity</subject><subject>Emissions control</subject><subject>Energy requirements</subject><subject>Environmental impact</subject><subject>Glass-glass module</subject><subject>Life cycle analysis</subject><subject>Life cycle assessment</subject><subject>Life cycle inventory</subject><subject>Life cycles</subject><subject>Modules</subject><subject>Photovoltaic cells</subject><subject>Photovoltaics</subject><subject>Silicon</subject><subject>Single crystals</subject><subject>Single-crystalline silicon</subject><subject>Sustainable development</subject><subject>Yield</subject><issn>0927-0248</issn><issn>1879-3398</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kM1r3DAQxUVJoZu0_0EPglzrjb5sSzkUQujHQqA9tL0K7WgctNjSRrKX7n9fJe45p4GZ997wfoR85GzLGe9uDtuSxsnNW8EE33LORd-_IRuue9NIafQF2TAj-oYJpd-Ry1IOjDHRSbUhf-8opOnospvDCekYBqRwhhGpKwVLmTDONA20hDFAivTnHzolv4xYbumu-uDluq6oxxIe4yc6ubgM9bTkEB_pmKCGV6-LnoZ4qokpn9-Tt4MbC374P6_I769fft1_bx5-fNvd3z00IKWaG4USuDF9N0gnoPN73Wv0HJRT0oBph7b1Yg-g5Z5xZbwZoLZ2EnXX8rYFeUWu19xjTk8Lltke0pJjfWlFq3mruOp0ValVBTmVknGwxxwml8-WM_vM2B7sytg-M7Yr42r7vNqwNjgFzLZAwAjoQ0aYrU_h9YB_n9CIoA</recordid><startdate>20210915</startdate><enddate>20210915</enddate><creator>Müller, Amelie</creator><creator>Friedrich, Lorenz</creator><creator>Reichel, Christian</creator><creator>Herceg, Sina</creator><creator>Mittag, Max</creator><creator>Neuhaus, Dirk Holger</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-8999-6339</orcidid></search><sort><creationdate>20210915</creationdate><title>A comparative life cycle assessment of silicon PV modules: Impact of module design, manufacturing location and inventory</title><author>Müller, Amelie ; Friedrich, Lorenz ; Reichel, Christian ; Herceg, Sina ; Mittag, Max ; Neuhaus, Dirk Holger</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-4e3c19976f3a2c6db878ed1c4a439c95f55d2bcc83b0149d9fc879a3e865155c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Carbon dioxide</topic><topic>Climate change</topic><topic>Electricity</topic><topic>Emissions control</topic><topic>Energy requirements</topic><topic>Environmental impact</topic><topic>Glass-glass module</topic><topic>Life cycle analysis</topic><topic>Life cycle assessment</topic><topic>Life cycle inventory</topic><topic>Life cycles</topic><topic>Modules</topic><topic>Photovoltaic cells</topic><topic>Photovoltaics</topic><topic>Silicon</topic><topic>Single crystals</topic><topic>Single-crystalline silicon</topic><topic>Sustainable development</topic><topic>Yield</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Müller, Amelie</creatorcontrib><creatorcontrib>Friedrich, Lorenz</creatorcontrib><creatorcontrib>Reichel, Christian</creatorcontrib><creatorcontrib>Herceg, Sina</creatorcontrib><creatorcontrib>Mittag, Max</creatorcontrib><creatorcontrib>Neuhaus, Dirk Holger</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Solar energy materials and solar cells</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Müller, Amelie</au><au>Friedrich, Lorenz</au><au>Reichel, Christian</au><au>Herceg, Sina</au><au>Mittag, Max</au><au>Neuhaus, Dirk Holger</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A comparative life cycle assessment of silicon PV modules: Impact of module design, manufacturing location and inventory</atitle><jtitle>Solar energy materials and solar cells</jtitle><date>2021-09-15</date><risdate>2021</risdate><volume>230</volume><spage>111277</spage><pages>111277-</pages><artnum>111277</artnum><issn>0927-0248</issn><eissn>1879-3398</eissn><abstract>Life Cycle Assessments (LCA) of single-crystalline silicon (sc-Si) photovoltaic (PV) systems often disregard novel module designs (e.g. glass-glass modules) and the fast pace of improvements in production. This study closes this research gap by comparing the environmental impacts of sc-Si glass-backsheet and glass-glass modules produced in China, Germany and the European Union (EU), using current inventory data. Results show lower potential environmental impacts for glass-glass compared to glass-backsheet modules and lower impacts for production in the EU and Germany compared to China for most impact categories. Concerning climate change, glass-backsheet (glass-glass) modules produced in China, Germany or the EU are linked to emissions of 810 (750), 580 (520) and 480 (420) kg CO2-eq/kWp, respectively. This corresponds to CO2-eq emission reductions of 30% for German and 40% for European production compared to Chinese production, and 8–12.5% reduction in glass-glass compared to glass-backsheet modules. Carbon intensity of produced electricity, excluding balance of system (BOS), amounts to 13–30 g CO2-eq/kWh, depending on production location and electricity yield calculation method. A warranty-based yield calculation method shows the influence of different lifetime electricity yields of glass-glass and glass-backsheet modules on the potential environmental impacts. This study identifies module efficiency, energy requirements, silicon consumption and carbon-intensity of electricity during production as significant levers for future reductions of environmental impacts. It emphasizes the importance of up-to-date inventories and current modelling of electricity mixes for representative LCA results of PV modules. Lastly, this paper argues that more differentiated methodological guidelines are needed to incentivize the development of sustainable module designs. [Display omitted] •Single-Si glass-glass modules show lower impacts than glass-backsheet modules.•Most impacts lowest for module production in EU, followed by Germany and China.•Comparison of influence of different life cycle inventory datasets on results.•Proposal of warranty-based yield calculation method for more exact impacts per kWh.•Call for differentiated LCA guidelines to support sustainable panel designs.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.solmat.2021.111277</doi><orcidid>https://orcid.org/0000-0002-8999-6339</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0927-0248
ispartof Solar energy materials and solar cells, 2021-09, Vol.230, p.111277, Article 111277
issn 0927-0248
1879-3398
language eng
recordid cdi_proquest_journals_2581541468
source Elsevier ScienceDirect Journals Complete
subjects Carbon dioxide
Climate change
Electricity
Emissions control
Energy requirements
Environmental impact
Glass-glass module
Life cycle analysis
Life cycle assessment
Life cycle inventory
Life cycles
Modules
Photovoltaic cells
Photovoltaics
Silicon
Single crystals
Single-crystalline silicon
Sustainable development
Yield
title A comparative life cycle assessment of silicon PV modules: Impact of module design, manufacturing location and inventory
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T08%3A41%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20comparative%20life%20cycle%20assessment%20of%20silicon%20PV%20modules:%20Impact%20of%20module%20design,%20manufacturing%20location%20and%20inventory&rft.jtitle=Solar%20energy%20materials%20and%20solar%20cells&rft.au=M%C3%BCller,%20Amelie&rft.date=2021-09-15&rft.volume=230&rft.spage=111277&rft.pages=111277-&rft.artnum=111277&rft.issn=0927-0248&rft.eissn=1879-3398&rft_id=info:doi/10.1016/j.solmat.2021.111277&rft_dat=%3Cproquest_cross%3E2581541468%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2581541468&rft_id=info:pmid/&rft_els_id=S0927024821003202&rfr_iscdi=true