A comparative life cycle assessment of silicon PV modules: Impact of module design, manufacturing location and inventory
Life Cycle Assessments (LCA) of single-crystalline silicon (sc-Si) photovoltaic (PV) systems often disregard novel module designs (e.g. glass-glass modules) and the fast pace of improvements in production. This study closes this research gap by comparing the environmental impacts of sc-Si glass-back...
Gespeichert in:
Veröffentlicht in: | Solar energy materials and solar cells 2021-09, Vol.230, p.111277, Article 111277 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 111277 |
container_title | Solar energy materials and solar cells |
container_volume | 230 |
creator | Müller, Amelie Friedrich, Lorenz Reichel, Christian Herceg, Sina Mittag, Max Neuhaus, Dirk Holger |
description | Life Cycle Assessments (LCA) of single-crystalline silicon (sc-Si) photovoltaic (PV) systems often disregard novel module designs (e.g. glass-glass modules) and the fast pace of improvements in production. This study closes this research gap by comparing the environmental impacts of sc-Si glass-backsheet and glass-glass modules produced in China, Germany and the European Union (EU), using current inventory data. Results show lower potential environmental impacts for glass-glass compared to glass-backsheet modules and lower impacts for production in the EU and Germany compared to China for most impact categories. Concerning climate change, glass-backsheet (glass-glass) modules produced in China, Germany or the EU are linked to emissions of 810 (750), 580 (520) and 480 (420) kg CO2-eq/kWp, respectively. This corresponds to CO2-eq emission reductions of 30% for German and 40% for European production compared to Chinese production, and 8–12.5% reduction in glass-glass compared to glass-backsheet modules. Carbon intensity of produced electricity, excluding balance of system (BOS), amounts to 13–30 g CO2-eq/kWh, depending on production location and electricity yield calculation method. A warranty-based yield calculation method shows the influence of different lifetime electricity yields of glass-glass and glass-backsheet modules on the potential environmental impacts. This study identifies module efficiency, energy requirements, silicon consumption and carbon-intensity of electricity during production as significant levers for future reductions of environmental impacts. It emphasizes the importance of up-to-date inventories and current modelling of electricity mixes for representative LCA results of PV modules. Lastly, this paper argues that more differentiated methodological guidelines are needed to incentivize the development of sustainable module designs.
[Display omitted]
•Single-Si glass-glass modules show lower impacts than glass-backsheet modules.•Most impacts lowest for module production in EU, followed by Germany and China.•Comparison of influence of different life cycle inventory datasets on results.•Proposal of warranty-based yield calculation method for more exact impacts per kWh.•Call for differentiated LCA guidelines to support sustainable panel designs. |
doi_str_mv | 10.1016/j.solmat.2021.111277 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2581541468</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0927024821003202</els_id><sourcerecordid>2581541468</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-4e3c19976f3a2c6db878ed1c4a439c95f55d2bcc83b0149d9fc879a3e865155c3</originalsourceid><addsrcrecordid>eNp9kM1r3DAQxUVJoZu0_0EPglzrjb5sSzkUQujHQqA9tL0K7WgctNjSRrKX7n9fJe45p4GZ997wfoR85GzLGe9uDtuSxsnNW8EE33LORd-_IRuue9NIafQF2TAj-oYJpd-Ry1IOjDHRSbUhf-8opOnospvDCekYBqRwhhGpKwVLmTDONA20hDFAivTnHzolv4xYbumu-uDluq6oxxIe4yc6ubgM9bTkEB_pmKCGV6-LnoZ4qokpn9-Tt4MbC374P6_I769fft1_bx5-fNvd3z00IKWaG4USuDF9N0gnoPN73Wv0HJRT0oBph7b1Yg-g5Z5xZbwZoLZ2EnXX8rYFeUWu19xjTk8Lltke0pJjfWlFq3mruOp0ValVBTmVknGwxxwml8-WM_vM2B7sytg-M7Yr42r7vNqwNjgFzLZAwAjoQ0aYrU_h9YB_n9CIoA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2581541468</pqid></control><display><type>article</type><title>A comparative life cycle assessment of silicon PV modules: Impact of module design, manufacturing location and inventory</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Müller, Amelie ; Friedrich, Lorenz ; Reichel, Christian ; Herceg, Sina ; Mittag, Max ; Neuhaus, Dirk Holger</creator><creatorcontrib>Müller, Amelie ; Friedrich, Lorenz ; Reichel, Christian ; Herceg, Sina ; Mittag, Max ; Neuhaus, Dirk Holger</creatorcontrib><description>Life Cycle Assessments (LCA) of single-crystalline silicon (sc-Si) photovoltaic (PV) systems often disregard novel module designs (e.g. glass-glass modules) and the fast pace of improvements in production. This study closes this research gap by comparing the environmental impacts of sc-Si glass-backsheet and glass-glass modules produced in China, Germany and the European Union (EU), using current inventory data. Results show lower potential environmental impacts for glass-glass compared to glass-backsheet modules and lower impacts for production in the EU and Germany compared to China for most impact categories. Concerning climate change, glass-backsheet (glass-glass) modules produced in China, Germany or the EU are linked to emissions of 810 (750), 580 (520) and 480 (420) kg CO2-eq/kWp, respectively. This corresponds to CO2-eq emission reductions of 30% for German and 40% for European production compared to Chinese production, and 8–12.5% reduction in glass-glass compared to glass-backsheet modules. Carbon intensity of produced electricity, excluding balance of system (BOS), amounts to 13–30 g CO2-eq/kWh, depending on production location and electricity yield calculation method. A warranty-based yield calculation method shows the influence of different lifetime electricity yields of glass-glass and glass-backsheet modules on the potential environmental impacts. This study identifies module efficiency, energy requirements, silicon consumption and carbon-intensity of electricity during production as significant levers for future reductions of environmental impacts. It emphasizes the importance of up-to-date inventories and current modelling of electricity mixes for representative LCA results of PV modules. Lastly, this paper argues that more differentiated methodological guidelines are needed to incentivize the development of sustainable module designs.
[Display omitted]
•Single-Si glass-glass modules show lower impacts than glass-backsheet modules.•Most impacts lowest for module production in EU, followed by Germany and China.•Comparison of influence of different life cycle inventory datasets on results.•Proposal of warranty-based yield calculation method for more exact impacts per kWh.•Call for differentiated LCA guidelines to support sustainable panel designs.</description><identifier>ISSN: 0927-0248</identifier><identifier>EISSN: 1879-3398</identifier><identifier>DOI: 10.1016/j.solmat.2021.111277</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Carbon dioxide ; Climate change ; Electricity ; Emissions control ; Energy requirements ; Environmental impact ; Glass-glass module ; Life cycle analysis ; Life cycle assessment ; Life cycle inventory ; Life cycles ; Modules ; Photovoltaic cells ; Photovoltaics ; Silicon ; Single crystals ; Single-crystalline silicon ; Sustainable development ; Yield</subject><ispartof>Solar energy materials and solar cells, 2021-09, Vol.230, p.111277, Article 111277</ispartof><rights>2021</rights><rights>Copyright Elsevier BV Sep 15, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-4e3c19976f3a2c6db878ed1c4a439c95f55d2bcc83b0149d9fc879a3e865155c3</citedby><cites>FETCH-LOGICAL-c334t-4e3c19976f3a2c6db878ed1c4a439c95f55d2bcc83b0149d9fc879a3e865155c3</cites><orcidid>0000-0002-8999-6339</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.solmat.2021.111277$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Müller, Amelie</creatorcontrib><creatorcontrib>Friedrich, Lorenz</creatorcontrib><creatorcontrib>Reichel, Christian</creatorcontrib><creatorcontrib>Herceg, Sina</creatorcontrib><creatorcontrib>Mittag, Max</creatorcontrib><creatorcontrib>Neuhaus, Dirk Holger</creatorcontrib><title>A comparative life cycle assessment of silicon PV modules: Impact of module design, manufacturing location and inventory</title><title>Solar energy materials and solar cells</title><description>Life Cycle Assessments (LCA) of single-crystalline silicon (sc-Si) photovoltaic (PV) systems often disregard novel module designs (e.g. glass-glass modules) and the fast pace of improvements in production. This study closes this research gap by comparing the environmental impacts of sc-Si glass-backsheet and glass-glass modules produced in China, Germany and the European Union (EU), using current inventory data. Results show lower potential environmental impacts for glass-glass compared to glass-backsheet modules and lower impacts for production in the EU and Germany compared to China for most impact categories. Concerning climate change, glass-backsheet (glass-glass) modules produced in China, Germany or the EU are linked to emissions of 810 (750), 580 (520) and 480 (420) kg CO2-eq/kWp, respectively. This corresponds to CO2-eq emission reductions of 30% for German and 40% for European production compared to Chinese production, and 8–12.5% reduction in glass-glass compared to glass-backsheet modules. Carbon intensity of produced electricity, excluding balance of system (BOS), amounts to 13–30 g CO2-eq/kWh, depending on production location and electricity yield calculation method. A warranty-based yield calculation method shows the influence of different lifetime electricity yields of glass-glass and glass-backsheet modules on the potential environmental impacts. This study identifies module efficiency, energy requirements, silicon consumption and carbon-intensity of electricity during production as significant levers for future reductions of environmental impacts. It emphasizes the importance of up-to-date inventories and current modelling of electricity mixes for representative LCA results of PV modules. Lastly, this paper argues that more differentiated methodological guidelines are needed to incentivize the development of sustainable module designs.
[Display omitted]
•Single-Si glass-glass modules show lower impacts than glass-backsheet modules.•Most impacts lowest for module production in EU, followed by Germany and China.•Comparison of influence of different life cycle inventory datasets on results.•Proposal of warranty-based yield calculation method for more exact impacts per kWh.•Call for differentiated LCA guidelines to support sustainable panel designs.</description><subject>Carbon dioxide</subject><subject>Climate change</subject><subject>Electricity</subject><subject>Emissions control</subject><subject>Energy requirements</subject><subject>Environmental impact</subject><subject>Glass-glass module</subject><subject>Life cycle analysis</subject><subject>Life cycle assessment</subject><subject>Life cycle inventory</subject><subject>Life cycles</subject><subject>Modules</subject><subject>Photovoltaic cells</subject><subject>Photovoltaics</subject><subject>Silicon</subject><subject>Single crystals</subject><subject>Single-crystalline silicon</subject><subject>Sustainable development</subject><subject>Yield</subject><issn>0927-0248</issn><issn>1879-3398</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kM1r3DAQxUVJoZu0_0EPglzrjb5sSzkUQujHQqA9tL0K7WgctNjSRrKX7n9fJe45p4GZ997wfoR85GzLGe9uDtuSxsnNW8EE33LORd-_IRuue9NIafQF2TAj-oYJpd-Ry1IOjDHRSbUhf-8opOnospvDCekYBqRwhhGpKwVLmTDONA20hDFAivTnHzolv4xYbumu-uDluq6oxxIe4yc6ubgM9bTkEB_pmKCGV6-LnoZ4qokpn9-Tt4MbC374P6_I769fft1_bx5-fNvd3z00IKWaG4USuDF9N0gnoPN73Wv0HJRT0oBph7b1Yg-g5Z5xZbwZoLZ2EnXX8rYFeUWu19xjTk8Lltke0pJjfWlFq3mruOp0ValVBTmVknGwxxwml8-WM_vM2B7sytg-M7Yr42r7vNqwNjgFzLZAwAjoQ0aYrU_h9YB_n9CIoA</recordid><startdate>20210915</startdate><enddate>20210915</enddate><creator>Müller, Amelie</creator><creator>Friedrich, Lorenz</creator><creator>Reichel, Christian</creator><creator>Herceg, Sina</creator><creator>Mittag, Max</creator><creator>Neuhaus, Dirk Holger</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-8999-6339</orcidid></search><sort><creationdate>20210915</creationdate><title>A comparative life cycle assessment of silicon PV modules: Impact of module design, manufacturing location and inventory</title><author>Müller, Amelie ; Friedrich, Lorenz ; Reichel, Christian ; Herceg, Sina ; Mittag, Max ; Neuhaus, Dirk Holger</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-4e3c19976f3a2c6db878ed1c4a439c95f55d2bcc83b0149d9fc879a3e865155c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Carbon dioxide</topic><topic>Climate change</topic><topic>Electricity</topic><topic>Emissions control</topic><topic>Energy requirements</topic><topic>Environmental impact</topic><topic>Glass-glass module</topic><topic>Life cycle analysis</topic><topic>Life cycle assessment</topic><topic>Life cycle inventory</topic><topic>Life cycles</topic><topic>Modules</topic><topic>Photovoltaic cells</topic><topic>Photovoltaics</topic><topic>Silicon</topic><topic>Single crystals</topic><topic>Single-crystalline silicon</topic><topic>Sustainable development</topic><topic>Yield</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Müller, Amelie</creatorcontrib><creatorcontrib>Friedrich, Lorenz</creatorcontrib><creatorcontrib>Reichel, Christian</creatorcontrib><creatorcontrib>Herceg, Sina</creatorcontrib><creatorcontrib>Mittag, Max</creatorcontrib><creatorcontrib>Neuhaus, Dirk Holger</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Solar energy materials and solar cells</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Müller, Amelie</au><au>Friedrich, Lorenz</au><au>Reichel, Christian</au><au>Herceg, Sina</au><au>Mittag, Max</au><au>Neuhaus, Dirk Holger</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A comparative life cycle assessment of silicon PV modules: Impact of module design, manufacturing location and inventory</atitle><jtitle>Solar energy materials and solar cells</jtitle><date>2021-09-15</date><risdate>2021</risdate><volume>230</volume><spage>111277</spage><pages>111277-</pages><artnum>111277</artnum><issn>0927-0248</issn><eissn>1879-3398</eissn><abstract>Life Cycle Assessments (LCA) of single-crystalline silicon (sc-Si) photovoltaic (PV) systems often disregard novel module designs (e.g. glass-glass modules) and the fast pace of improvements in production. This study closes this research gap by comparing the environmental impacts of sc-Si glass-backsheet and glass-glass modules produced in China, Germany and the European Union (EU), using current inventory data. Results show lower potential environmental impacts for glass-glass compared to glass-backsheet modules and lower impacts for production in the EU and Germany compared to China for most impact categories. Concerning climate change, glass-backsheet (glass-glass) modules produced in China, Germany or the EU are linked to emissions of 810 (750), 580 (520) and 480 (420) kg CO2-eq/kWp, respectively. This corresponds to CO2-eq emission reductions of 30% for German and 40% for European production compared to Chinese production, and 8–12.5% reduction in glass-glass compared to glass-backsheet modules. Carbon intensity of produced electricity, excluding balance of system (BOS), amounts to 13–30 g CO2-eq/kWh, depending on production location and electricity yield calculation method. A warranty-based yield calculation method shows the influence of different lifetime electricity yields of glass-glass and glass-backsheet modules on the potential environmental impacts. This study identifies module efficiency, energy requirements, silicon consumption and carbon-intensity of electricity during production as significant levers for future reductions of environmental impacts. It emphasizes the importance of up-to-date inventories and current modelling of electricity mixes for representative LCA results of PV modules. Lastly, this paper argues that more differentiated methodological guidelines are needed to incentivize the development of sustainable module designs.
[Display omitted]
•Single-Si glass-glass modules show lower impacts than glass-backsheet modules.•Most impacts lowest for module production in EU, followed by Germany and China.•Comparison of influence of different life cycle inventory datasets on results.•Proposal of warranty-based yield calculation method for more exact impacts per kWh.•Call for differentiated LCA guidelines to support sustainable panel designs.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.solmat.2021.111277</doi><orcidid>https://orcid.org/0000-0002-8999-6339</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0927-0248 |
ispartof | Solar energy materials and solar cells, 2021-09, Vol.230, p.111277, Article 111277 |
issn | 0927-0248 1879-3398 |
language | eng |
recordid | cdi_proquest_journals_2581541468 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Carbon dioxide Climate change Electricity Emissions control Energy requirements Environmental impact Glass-glass module Life cycle analysis Life cycle assessment Life cycle inventory Life cycles Modules Photovoltaic cells Photovoltaics Silicon Single crystals Single-crystalline silicon Sustainable development Yield |
title | A comparative life cycle assessment of silicon PV modules: Impact of module design, manufacturing location and inventory |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T08%3A41%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20comparative%20life%20cycle%20assessment%20of%20silicon%20PV%20modules:%20Impact%20of%20module%20design,%20manufacturing%20location%20and%20inventory&rft.jtitle=Solar%20energy%20materials%20and%20solar%20cells&rft.au=M%C3%BCller,%20Amelie&rft.date=2021-09-15&rft.volume=230&rft.spage=111277&rft.pages=111277-&rft.artnum=111277&rft.issn=0927-0248&rft.eissn=1879-3398&rft_id=info:doi/10.1016/j.solmat.2021.111277&rft_dat=%3Cproquest_cross%3E2581541468%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2581541468&rft_id=info:pmid/&rft_els_id=S0927024821003202&rfr_iscdi=true |