Effect of air mass on carrier losses in bifacial silicon heterojunction solar cells

We investigate the effect of incident spectra on current loss as a function of depth and voltage into high efficiency textured bifacial silicon heterojunction solar cells. We integrate thin-film ellipsometry measurements with a 3D optical model and a 2D electronic model and validate our model with m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Solar energy materials and solar cells 2021-09, Vol.230, p.111293, Article 111293
Hauptverfasser: Tonita, Erin M., Valdivia, Christopher E., Martinez-Szewczyk, Michael, Lewis, Mandy R., Bertoni, Mariana I., Hinzer, Karin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 111293
container_title Solar energy materials and solar cells
container_volume 230
creator Tonita, Erin M.
Valdivia, Christopher E.
Martinez-Szewczyk, Michael
Lewis, Mandy R.
Bertoni, Mariana I.
Hinzer, Karin
description We investigate the effect of incident spectra on current loss as a function of depth and voltage into high efficiency textured bifacial silicon heterojunction solar cells. We integrate thin-film ellipsometry measurements with a 3D optical model and a 2D electronic model and validate our model with measurements of external quantum efficiency and Suns-Voc. For front illumination at normal incidence, an increasing air mass of AM1.5 to 10 reduces current density loss due to parasitic absorption in ITO and a-Si:H from 8.1% to 4.0%, and increases recombination loss at maximum power from 4.2% to 4.7%, resulting in an overall increase in collected current (88.2% to 90.5%). Cell performance metrics are summarized as a function of air mass, with efficiency peaking at AM5.0 for front illuminated and rear illuminated cells with an albedo of unity. We further demonstrate the impact of spectra on bifacial efficiency by calculating rear-side performance with the spectral albedo of dry grass. Overall, current-collection and efficiency trends emphasize the importance of considering spectral effects in energy yield models. These results are of particular importance for cell structures with high bifaciality and significant spectral albedo contributions, locations with large proportions of diffuse light, and high air mass locations as in mid-to-high latitudes. •Optoelectronic model is validated with measurements of EQE and Suns-Voc.•Collected photogenerated current increases from 88% to 91% between AM1-10.•Maximum cell efficiency occurs at AM5 but is heavily influenced by spectral albedo.•Encapsulation increases parasitic absorption, decreasing efficiency by 1.4% abs.•Most impactful for modules with high bifaciality, high albedo, mid to high latitude.
doi_str_mv 10.1016/j.solmat.2021.111293
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2581541232</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0927024821003354</els_id><sourcerecordid>2581541232</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-bbb3da1824cbd9f781c53455da2bc34c7b4b521b62dc7d1477e48323caeaf5e53</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKvfwEPA8675281eBCm1CgUP6jkkswlm2W5qshX89qasZ0_DwHtv5v0QuqWkpoSu7vs6x2FvppoRRmtKKWv5GVpQ1bQV5606RwvSsqYiTKhLdJVzTwhhKy4W6G3jvYMJR49NSHhvcsZxxGBSCi7hIebsMg4jtsEbCGbAOQwBiuTTTS7F_jjCFMpaPjAJgxuGfI0uvBmyu_mbS_TxtHlfP1e71-3L-nFXAVdkqqy1vDNUMQG2a32jKEgupOwMs8AFNFZYyahdsQ6ajoqmcUJxxsE446WTfInu5txDil9Hlyfdx2May0nNpKJSUFbkSyRmFaRSJjmvDynsTfrRlOgTPt3rGZ8-4dMzvmJ7mG2uNPguLHSG4EZwXUgFmO5i-D_gF0H_e0I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2581541232</pqid></control><display><type>article</type><title>Effect of air mass on carrier losses in bifacial silicon heterojunction solar cells</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Tonita, Erin M. ; Valdivia, Christopher E. ; Martinez-Szewczyk, Michael ; Lewis, Mandy R. ; Bertoni, Mariana I. ; Hinzer, Karin</creator><creatorcontrib>Tonita, Erin M. ; Valdivia, Christopher E. ; Martinez-Szewczyk, Michael ; Lewis, Mandy R. ; Bertoni, Mariana I. ; Hinzer, Karin</creatorcontrib><description>We investigate the effect of incident spectra on current loss as a function of depth and voltage into high efficiency textured bifacial silicon heterojunction solar cells. We integrate thin-film ellipsometry measurements with a 3D optical model and a 2D electronic model and validate our model with measurements of external quantum efficiency and Suns-Voc. For front illumination at normal incidence, an increasing air mass of AM1.5 to 10 reduces current density loss due to parasitic absorption in ITO and a-Si:H from 8.1% to 4.0%, and increases recombination loss at maximum power from 4.2% to 4.7%, resulting in an overall increase in collected current (88.2% to 90.5%). Cell performance metrics are summarized as a function of air mass, with efficiency peaking at AM5.0 for front illuminated and rear illuminated cells with an albedo of unity. We further demonstrate the impact of spectra on bifacial efficiency by calculating rear-side performance with the spectral albedo of dry grass. Overall, current-collection and efficiency trends emphasize the importance of considering spectral effects in energy yield models. These results are of particular importance for cell structures with high bifaciality and significant spectral albedo contributions, locations with large proportions of diffuse light, and high air mass locations as in mid-to-high latitudes. •Optoelectronic model is validated with measurements of EQE and Suns-Voc.•Collected photogenerated current increases from 88% to 91% between AM1-10.•Maximum cell efficiency occurs at AM5 but is heavily influenced by spectral albedo.•Encapsulation increases parasitic absorption, decreasing efficiency by 1.4% abs.•Most impactful for modules with high bifaciality, high albedo, mid to high latitude.</description><identifier>ISSN: 0927-0248</identifier><identifier>EISSN: 1879-3398</identifier><identifier>DOI: 10.1016/j.solmat.2021.111293</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Air masses ; Albedo ; Bifacial photovoltaics ; Carrier transport ; Current loss ; Efficiency ; Ellipsometry ; Heterojunctions ; Maximum power ; Optoelectronic modelling ; Performance measurement ; Photovoltaic cells ; Quantum efficiency ; Recombination ; Silicon ; Solar cells ; Solar spectrum ; Spectra ; Spectral albedo ; Thin films ; Three dimensional models ; Two dimensional models</subject><ispartof>Solar energy materials and solar cells, 2021-09, Vol.230, p.111293, Article 111293</ispartof><rights>2021 The Authors</rights><rights>Copyright Elsevier BV Sep 15, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-bbb3da1824cbd9f781c53455da2bc34c7b4b521b62dc7d1477e48323caeaf5e53</citedby><cites>FETCH-LOGICAL-c380t-bbb3da1824cbd9f781c53455da2bc34c7b4b521b62dc7d1477e48323caeaf5e53</cites><orcidid>0000-0003-0199-6148 ; 0000-0002-0415-837X ; 0000-0003-4558-2414</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.solmat.2021.111293$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Tonita, Erin M.</creatorcontrib><creatorcontrib>Valdivia, Christopher E.</creatorcontrib><creatorcontrib>Martinez-Szewczyk, Michael</creatorcontrib><creatorcontrib>Lewis, Mandy R.</creatorcontrib><creatorcontrib>Bertoni, Mariana I.</creatorcontrib><creatorcontrib>Hinzer, Karin</creatorcontrib><title>Effect of air mass on carrier losses in bifacial silicon heterojunction solar cells</title><title>Solar energy materials and solar cells</title><description>We investigate the effect of incident spectra on current loss as a function of depth and voltage into high efficiency textured bifacial silicon heterojunction solar cells. We integrate thin-film ellipsometry measurements with a 3D optical model and a 2D electronic model and validate our model with measurements of external quantum efficiency and Suns-Voc. For front illumination at normal incidence, an increasing air mass of AM1.5 to 10 reduces current density loss due to parasitic absorption in ITO and a-Si:H from 8.1% to 4.0%, and increases recombination loss at maximum power from 4.2% to 4.7%, resulting in an overall increase in collected current (88.2% to 90.5%). Cell performance metrics are summarized as a function of air mass, with efficiency peaking at AM5.0 for front illuminated and rear illuminated cells with an albedo of unity. We further demonstrate the impact of spectra on bifacial efficiency by calculating rear-side performance with the spectral albedo of dry grass. Overall, current-collection and efficiency trends emphasize the importance of considering spectral effects in energy yield models. These results are of particular importance for cell structures with high bifaciality and significant spectral albedo contributions, locations with large proportions of diffuse light, and high air mass locations as in mid-to-high latitudes. •Optoelectronic model is validated with measurements of EQE and Suns-Voc.•Collected photogenerated current increases from 88% to 91% between AM1-10.•Maximum cell efficiency occurs at AM5 but is heavily influenced by spectral albedo.•Encapsulation increases parasitic absorption, decreasing efficiency by 1.4% abs.•Most impactful for modules with high bifaciality, high albedo, mid to high latitude.</description><subject>Air masses</subject><subject>Albedo</subject><subject>Bifacial photovoltaics</subject><subject>Carrier transport</subject><subject>Current loss</subject><subject>Efficiency</subject><subject>Ellipsometry</subject><subject>Heterojunctions</subject><subject>Maximum power</subject><subject>Optoelectronic modelling</subject><subject>Performance measurement</subject><subject>Photovoltaic cells</subject><subject>Quantum efficiency</subject><subject>Recombination</subject><subject>Silicon</subject><subject>Solar cells</subject><subject>Solar spectrum</subject><subject>Spectra</subject><subject>Spectral albedo</subject><subject>Thin films</subject><subject>Three dimensional models</subject><subject>Two dimensional models</subject><issn>0927-0248</issn><issn>1879-3398</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKvfwEPA8675281eBCm1CgUP6jkkswlm2W5qshX89qasZ0_DwHtv5v0QuqWkpoSu7vs6x2FvppoRRmtKKWv5GVpQ1bQV5606RwvSsqYiTKhLdJVzTwhhKy4W6G3jvYMJR49NSHhvcsZxxGBSCi7hIebsMg4jtsEbCGbAOQwBiuTTTS7F_jjCFMpaPjAJgxuGfI0uvBmyu_mbS_TxtHlfP1e71-3L-nFXAVdkqqy1vDNUMQG2a32jKEgupOwMs8AFNFZYyahdsQ6ajoqmcUJxxsE446WTfInu5txDil9Hlyfdx2May0nNpKJSUFbkSyRmFaRSJjmvDynsTfrRlOgTPt3rGZ8-4dMzvmJ7mG2uNPguLHSG4EZwXUgFmO5i-D_gF0H_e0I</recordid><startdate>20210915</startdate><enddate>20210915</enddate><creator>Tonita, Erin M.</creator><creator>Valdivia, Christopher E.</creator><creator>Martinez-Szewczyk, Michael</creator><creator>Lewis, Mandy R.</creator><creator>Bertoni, Mariana I.</creator><creator>Hinzer, Karin</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-0199-6148</orcidid><orcidid>https://orcid.org/0000-0002-0415-837X</orcidid><orcidid>https://orcid.org/0000-0003-4558-2414</orcidid></search><sort><creationdate>20210915</creationdate><title>Effect of air mass on carrier losses in bifacial silicon heterojunction solar cells</title><author>Tonita, Erin M. ; Valdivia, Christopher E. ; Martinez-Szewczyk, Michael ; Lewis, Mandy R. ; Bertoni, Mariana I. ; Hinzer, Karin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-bbb3da1824cbd9f781c53455da2bc34c7b4b521b62dc7d1477e48323caeaf5e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Air masses</topic><topic>Albedo</topic><topic>Bifacial photovoltaics</topic><topic>Carrier transport</topic><topic>Current loss</topic><topic>Efficiency</topic><topic>Ellipsometry</topic><topic>Heterojunctions</topic><topic>Maximum power</topic><topic>Optoelectronic modelling</topic><topic>Performance measurement</topic><topic>Photovoltaic cells</topic><topic>Quantum efficiency</topic><topic>Recombination</topic><topic>Silicon</topic><topic>Solar cells</topic><topic>Solar spectrum</topic><topic>Spectra</topic><topic>Spectral albedo</topic><topic>Thin films</topic><topic>Three dimensional models</topic><topic>Two dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tonita, Erin M.</creatorcontrib><creatorcontrib>Valdivia, Christopher E.</creatorcontrib><creatorcontrib>Martinez-Szewczyk, Michael</creatorcontrib><creatorcontrib>Lewis, Mandy R.</creatorcontrib><creatorcontrib>Bertoni, Mariana I.</creatorcontrib><creatorcontrib>Hinzer, Karin</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Solar energy materials and solar cells</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tonita, Erin M.</au><au>Valdivia, Christopher E.</au><au>Martinez-Szewczyk, Michael</au><au>Lewis, Mandy R.</au><au>Bertoni, Mariana I.</au><au>Hinzer, Karin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of air mass on carrier losses in bifacial silicon heterojunction solar cells</atitle><jtitle>Solar energy materials and solar cells</jtitle><date>2021-09-15</date><risdate>2021</risdate><volume>230</volume><spage>111293</spage><pages>111293-</pages><artnum>111293</artnum><issn>0927-0248</issn><eissn>1879-3398</eissn><abstract>We investigate the effect of incident spectra on current loss as a function of depth and voltage into high efficiency textured bifacial silicon heterojunction solar cells. We integrate thin-film ellipsometry measurements with a 3D optical model and a 2D electronic model and validate our model with measurements of external quantum efficiency and Suns-Voc. For front illumination at normal incidence, an increasing air mass of AM1.5 to 10 reduces current density loss due to parasitic absorption in ITO and a-Si:H from 8.1% to 4.0%, and increases recombination loss at maximum power from 4.2% to 4.7%, resulting in an overall increase in collected current (88.2% to 90.5%). Cell performance metrics are summarized as a function of air mass, with efficiency peaking at AM5.0 for front illuminated and rear illuminated cells with an albedo of unity. We further demonstrate the impact of spectra on bifacial efficiency by calculating rear-side performance with the spectral albedo of dry grass. Overall, current-collection and efficiency trends emphasize the importance of considering spectral effects in energy yield models. These results are of particular importance for cell structures with high bifaciality and significant spectral albedo contributions, locations with large proportions of diffuse light, and high air mass locations as in mid-to-high latitudes. •Optoelectronic model is validated with measurements of EQE and Suns-Voc.•Collected photogenerated current increases from 88% to 91% between AM1-10.•Maximum cell efficiency occurs at AM5 but is heavily influenced by spectral albedo.•Encapsulation increases parasitic absorption, decreasing efficiency by 1.4% abs.•Most impactful for modules with high bifaciality, high albedo, mid to high latitude.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.solmat.2021.111293</doi><orcidid>https://orcid.org/0000-0003-0199-6148</orcidid><orcidid>https://orcid.org/0000-0002-0415-837X</orcidid><orcidid>https://orcid.org/0000-0003-4558-2414</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0927-0248
ispartof Solar energy materials and solar cells, 2021-09, Vol.230, p.111293, Article 111293
issn 0927-0248
1879-3398
language eng
recordid cdi_proquest_journals_2581541232
source ScienceDirect Journals (5 years ago - present)
subjects Air masses
Albedo
Bifacial photovoltaics
Carrier transport
Current loss
Efficiency
Ellipsometry
Heterojunctions
Maximum power
Optoelectronic modelling
Performance measurement
Photovoltaic cells
Quantum efficiency
Recombination
Silicon
Solar cells
Solar spectrum
Spectra
Spectral albedo
Thin films
Three dimensional models
Two dimensional models
title Effect of air mass on carrier losses in bifacial silicon heterojunction solar cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T14%3A45%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20air%20mass%20on%20carrier%20losses%20in%20bifacial%20silicon%20heterojunction%20solar%20cells&rft.jtitle=Solar%20energy%20materials%20and%20solar%20cells&rft.au=Tonita,%20Erin%20M.&rft.date=2021-09-15&rft.volume=230&rft.spage=111293&rft.pages=111293-&rft.artnum=111293&rft.issn=0927-0248&rft.eissn=1879-3398&rft_id=info:doi/10.1016/j.solmat.2021.111293&rft_dat=%3Cproquest_cross%3E2581541232%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2581541232&rft_id=info:pmid/&rft_els_id=S0927024821003354&rfr_iscdi=true