Rectangles and spirals
Every reader knows about the Golden Rectangle (see [1, pp. 85, 119], [2, 3]), and that it can be subdivided into a square and a smaller copy of itself, and that this process can be continued indefinitely, converging towards the intersection point of diagonals of any two successive rectangles in the...
Gespeichert in:
Veröffentlicht in: | Mathematical gazette 2021-11, Vol.105 (564), p.416-424 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 424 |
---|---|
container_issue | 564 |
container_start_page | 416 |
container_title | Mathematical gazette |
container_volume | 105 |
creator | Ridley, J. N. |
description | Every reader knows about the Golden Rectangle (see [1, pp. 85, 119], [2, 3]), and that it can be subdivided into a square and a smaller copy of itself, and that this process can be continued indefinitely, converging towards the intersection point of diagonals of any two successive rectangles in the sequence. The circumscribed logarithmic spiral passing through the vertices and converging to the same point is also familiar (see [3, 4]), and is analogous to the circumcircle of a regular polygon or a triangle. The approximate logarithmic spiral obtained by drawing a quarter-circle inside each of the squares is equally well known [3, p. 64]. Perhaps slightly less familiar is the inscribed spiral, which is tangential to a side of every rectangle, like the incircle of a triangle or a regular polygon. It does not (quite) coincide with the spiral passing through the point of subdivision of each side, as discussed in [3, pp. 73-77]. The Golden Rectangle, its subdivisions, and the circumscribed and inscribed spirals are illustrated in Figure 1. |
doi_str_mv | 10.1017/mag.2021.108 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2581222866</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2581222866</sourcerecordid><originalsourceid>FETCH-LOGICAL-c263t-ab6bf521689286f4dde535a70c1037856a97961f809a9cd690b0e96ecee731133</originalsourceid><addsrcrecordid>eNotj01LAzEURYMoOFZ34rrg1qnvvTQvyVKKX1AQRNchk8mUlrYzJtOF_96UurpcuJzLEeIWYYaA-nHnVzMCwtLMmagIFNcsyZyLCoBUrZSmS3GV8wYAjJxzJe4-Yxj9frWNeer37TQP6-S3-VpcdCXizX9OxPfL89firV5-vL4vnpZ1IJZj7RtuOkXIxpLhbt62UUnlNQQEqY1ib7Vl7AxYb0PLFhqIlmOIUUtEKSfi_sQdUv9ziHl0m_6Q9uXSkTJIVLBcVg-nVUh9zil2bkjrnU-_DsEdzV0xd0fz0oz8AypzSOA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2581222866</pqid></control><display><type>article</type><title>Rectangles and spirals</title><source>Cambridge University Press Journals Complete</source><creator>Ridley, J. N.</creator><creatorcontrib>Ridley, J. N.</creatorcontrib><description>Every reader knows about the Golden Rectangle (see [1, pp. 85, 119], [2, 3]), and that it can be subdivided into a square and a smaller copy of itself, and that this process can be continued indefinitely, converging towards the intersection point of diagonals of any two successive rectangles in the sequence. The circumscribed logarithmic spiral passing through the vertices and converging to the same point is also familiar (see [3, 4]), and is analogous to the circumcircle of a regular polygon or a triangle. The approximate logarithmic spiral obtained by drawing a quarter-circle inside each of the squares is equally well known [3, p. 64]. Perhaps slightly less familiar is the inscribed spiral, which is tangential to a side of every rectangle, like the incircle of a triangle or a regular polygon. It does not (quite) coincide with the spiral passing through the point of subdivision of each side, as discussed in [3, pp. 73-77]. The Golden Rectangle, its subdivisions, and the circumscribed and inscribed spirals are illustrated in Figure 1.</description><identifier>ISSN: 0025-5572</identifier><identifier>EISSN: 2056-6328</identifier><identifier>DOI: 10.1017/mag.2021.108</identifier><language>eng</language><publisher>Leicester: Cambridge University Press</publisher><subject>Apexes ; Convergence ; Polygons ; Rectangles ; Spirals ; Subdivisions ; Triangles</subject><ispartof>Mathematical gazette, 2021-11, Vol.105 (564), p.416-424</ispartof><rights>The Mathematical Association 2021</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c263t-ab6bf521689286f4dde535a70c1037856a97961f809a9cd690b0e96ecee731133</citedby><cites>FETCH-LOGICAL-c263t-ab6bf521689286f4dde535a70c1037856a97961f809a9cd690b0e96ecee731133</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ridley, J. N.</creatorcontrib><title>Rectangles and spirals</title><title>Mathematical gazette</title><description>Every reader knows about the Golden Rectangle (see [1, pp. 85, 119], [2, 3]), and that it can be subdivided into a square and a smaller copy of itself, and that this process can be continued indefinitely, converging towards the intersection point of diagonals of any two successive rectangles in the sequence. The circumscribed logarithmic spiral passing through the vertices and converging to the same point is also familiar (see [3, 4]), and is analogous to the circumcircle of a regular polygon or a triangle. The approximate logarithmic spiral obtained by drawing a quarter-circle inside each of the squares is equally well known [3, p. 64]. Perhaps slightly less familiar is the inscribed spiral, which is tangential to a side of every rectangle, like the incircle of a triangle or a regular polygon. It does not (quite) coincide with the spiral passing through the point of subdivision of each side, as discussed in [3, pp. 73-77]. The Golden Rectangle, its subdivisions, and the circumscribed and inscribed spirals are illustrated in Figure 1.</description><subject>Apexes</subject><subject>Convergence</subject><subject>Polygons</subject><subject>Rectangles</subject><subject>Spirals</subject><subject>Subdivisions</subject><subject>Triangles</subject><issn>0025-5572</issn><issn>2056-6328</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNotj01LAzEURYMoOFZ34rrg1qnvvTQvyVKKX1AQRNchk8mUlrYzJtOF_96UurpcuJzLEeIWYYaA-nHnVzMCwtLMmagIFNcsyZyLCoBUrZSmS3GV8wYAjJxzJe4-Yxj9frWNeer37TQP6-S3-VpcdCXizX9OxPfL89firV5-vL4vnpZ1IJZj7RtuOkXIxpLhbt62UUnlNQQEqY1ib7Vl7AxYb0PLFhqIlmOIUUtEKSfi_sQdUv9ziHl0m_6Q9uXSkTJIVLBcVg-nVUh9zil2bkjrnU-_DsEdzV0xd0fz0oz8AypzSOA</recordid><startdate>202111</startdate><enddate>202111</enddate><creator>Ridley, J. N.</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>202111</creationdate><title>Rectangles and spirals</title><author>Ridley, J. N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c263t-ab6bf521689286f4dde535a70c1037856a97961f809a9cd690b0e96ecee731133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Apexes</topic><topic>Convergence</topic><topic>Polygons</topic><topic>Rectangles</topic><topic>Spirals</topic><topic>Subdivisions</topic><topic>Triangles</topic><toplevel>online_resources</toplevel><creatorcontrib>Ridley, J. N.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Mathematical gazette</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ridley, J. N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rectangles and spirals</atitle><jtitle>Mathematical gazette</jtitle><date>2021-11</date><risdate>2021</risdate><volume>105</volume><issue>564</issue><spage>416</spage><epage>424</epage><pages>416-424</pages><issn>0025-5572</issn><eissn>2056-6328</eissn><abstract>Every reader knows about the Golden Rectangle (see [1, pp. 85, 119], [2, 3]), and that it can be subdivided into a square and a smaller copy of itself, and that this process can be continued indefinitely, converging towards the intersection point of diagonals of any two successive rectangles in the sequence. The circumscribed logarithmic spiral passing through the vertices and converging to the same point is also familiar (see [3, 4]), and is analogous to the circumcircle of a regular polygon or a triangle. The approximate logarithmic spiral obtained by drawing a quarter-circle inside each of the squares is equally well known [3, p. 64]. Perhaps slightly less familiar is the inscribed spiral, which is tangential to a side of every rectangle, like the incircle of a triangle or a regular polygon. It does not (quite) coincide with the spiral passing through the point of subdivision of each side, as discussed in [3, pp. 73-77]. The Golden Rectangle, its subdivisions, and the circumscribed and inscribed spirals are illustrated in Figure 1.</abstract><cop>Leicester</cop><pub>Cambridge University Press</pub><doi>10.1017/mag.2021.108</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0025-5572 |
ispartof | Mathematical gazette, 2021-11, Vol.105 (564), p.416-424 |
issn | 0025-5572 2056-6328 |
language | eng |
recordid | cdi_proquest_journals_2581222866 |
source | Cambridge University Press Journals Complete |
subjects | Apexes Convergence Polygons Rectangles Spirals Subdivisions Triangles |
title | Rectangles and spirals |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T11%3A21%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rectangles%20and%20spirals&rft.jtitle=Mathematical%20gazette&rft.au=Ridley,%20J.%20N.&rft.date=2021-11&rft.volume=105&rft.issue=564&rft.spage=416&rft.epage=424&rft.pages=416-424&rft.issn=0025-5572&rft.eissn=2056-6328&rft_id=info:doi/10.1017/mag.2021.108&rft_dat=%3Cproquest_cross%3E2581222866%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2581222866&rft_id=info:pmid/&rfr_iscdi=true |