Pano-AVQA: Grounded Audio-Visual Question Answering on 360\(^\circ\) Videos
360\(^\circ\) videos convey holistic views for the surroundings of a scene. It provides audio-visual cues beyond pre-determined normal field of views and displays distinctive spatial relations on a sphere. However, previous benchmark tasks for panoramic videos are still limited to evaluate the seman...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2021-10 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Yun, Heeseung Yu, Youngjae Yang, Wonsuk Lee, Kangil Kim, Gunhee |
description | 360\(^\circ\) videos convey holistic views for the surroundings of a scene. It provides audio-visual cues beyond pre-determined normal field of views and displays distinctive spatial relations on a sphere. However, previous benchmark tasks for panoramic videos are still limited to evaluate the semantic understanding of audio-visual relationships or spherical spatial property in surroundings. We propose a novel benchmark named Pano-AVQA as a large-scale grounded audio-visual question answering dataset on panoramic videos. Using 5.4K 360\(^\circ\) video clips harvested online, we collect two types of novel question-answer pairs with bounding-box grounding: spherical spatial relation QAs and audio-visual relation QAs. We train several transformer-based models from Pano-AVQA, where the results suggest that our proposed spherical spatial embeddings and multimodal training objectives fairly contribute to a better semantic understanding of the panoramic surroundings on the dataset. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2581109361</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2581109361</sourcerecordid><originalsourceid>FETCH-proquest_journals_25811093613</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTwDkjMy9d1DAt0tFJwL8ovzUtJTVFwLE3JzNcNyywuTcxRCCxNLS7JzM9TcMwrLk8tysxLVwByjM0MYjTiYpIzi5JjNBXCMlNS84t5GFjTEnOKU3mhNDeDsptriLOHbkFRfiHIlPis_NKiPKBUvJGphaGhgaWxmaExcaoAEZo7Kw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2581109361</pqid></control><display><type>article</type><title>Pano-AVQA: Grounded Audio-Visual Question Answering on 360\(^\circ\) Videos</title><source>Freely Accessible Journals</source><creator>Yun, Heeseung ; Yu, Youngjae ; Yang, Wonsuk ; Lee, Kangil ; Kim, Gunhee</creator><creatorcontrib>Yun, Heeseung ; Yu, Youngjae ; Yang, Wonsuk ; Lee, Kangil ; Kim, Gunhee</creatorcontrib><description>360\(^\circ\) videos convey holistic views for the surroundings of a scene. It provides audio-visual cues beyond pre-determined normal field of views and displays distinctive spatial relations on a sphere. However, previous benchmark tasks for panoramic videos are still limited to evaluate the semantic understanding of audio-visual relationships or spherical spatial property in surroundings. We propose a novel benchmark named Pano-AVQA as a large-scale grounded audio-visual question answering dataset on panoramic videos. Using 5.4K 360\(^\circ\) video clips harvested online, we collect two types of novel question-answer pairs with bounding-box grounding: spherical spatial relation QAs and audio-visual relation QAs. We train several transformer-based models from Pano-AVQA, where the results suggest that our proposed spherical spatial embeddings and multimodal training objectives fairly contribute to a better semantic understanding of the panoramic surroundings on the dataset.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Benchmarks ; Datasets ; Questions ; Semantics ; Video</subject><ispartof>arXiv.org, 2021-10</ispartof><rights>2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>781,785</link.rule.ids></links><search><creatorcontrib>Yun, Heeseung</creatorcontrib><creatorcontrib>Yu, Youngjae</creatorcontrib><creatorcontrib>Yang, Wonsuk</creatorcontrib><creatorcontrib>Lee, Kangil</creatorcontrib><creatorcontrib>Kim, Gunhee</creatorcontrib><title>Pano-AVQA: Grounded Audio-Visual Question Answering on 360\(^\circ\) Videos</title><title>arXiv.org</title><description>360\(^\circ\) videos convey holistic views for the surroundings of a scene. It provides audio-visual cues beyond pre-determined normal field of views and displays distinctive spatial relations on a sphere. However, previous benchmark tasks for panoramic videos are still limited to evaluate the semantic understanding of audio-visual relationships or spherical spatial property in surroundings. We propose a novel benchmark named Pano-AVQA as a large-scale grounded audio-visual question answering dataset on panoramic videos. Using 5.4K 360\(^\circ\) video clips harvested online, we collect two types of novel question-answer pairs with bounding-box grounding: spherical spatial relation QAs and audio-visual relation QAs. We train several transformer-based models from Pano-AVQA, where the results suggest that our proposed spherical spatial embeddings and multimodal training objectives fairly contribute to a better semantic understanding of the panoramic surroundings on the dataset.</description><subject>Benchmarks</subject><subject>Datasets</subject><subject>Questions</subject><subject>Semantics</subject><subject>Video</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTwDkjMy9d1DAt0tFJwL8ovzUtJTVFwLE3JzNcNyywuTcxRCCxNLS7JzM9TcMwrLk8tysxLVwByjM0MYjTiYpIzi5JjNBXCMlNS84t5GFjTEnOKU3mhNDeDsptriLOHbkFRfiHIlPis_NKiPKBUvJGphaGhgaWxmaExcaoAEZo7Kw</recordid><startdate>20211011</startdate><enddate>20211011</enddate><creator>Yun, Heeseung</creator><creator>Yu, Youngjae</creator><creator>Yang, Wonsuk</creator><creator>Lee, Kangil</creator><creator>Kim, Gunhee</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20211011</creationdate><title>Pano-AVQA: Grounded Audio-Visual Question Answering on 360\(^\circ\) Videos</title><author>Yun, Heeseung ; Yu, Youngjae ; Yang, Wonsuk ; Lee, Kangil ; Kim, Gunhee</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25811093613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Benchmarks</topic><topic>Datasets</topic><topic>Questions</topic><topic>Semantics</topic><topic>Video</topic><toplevel>online_resources</toplevel><creatorcontrib>Yun, Heeseung</creatorcontrib><creatorcontrib>Yu, Youngjae</creatorcontrib><creatorcontrib>Yang, Wonsuk</creatorcontrib><creatorcontrib>Lee, Kangil</creatorcontrib><creatorcontrib>Kim, Gunhee</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yun, Heeseung</au><au>Yu, Youngjae</au><au>Yang, Wonsuk</au><au>Lee, Kangil</au><au>Kim, Gunhee</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Pano-AVQA: Grounded Audio-Visual Question Answering on 360\(^\circ\) Videos</atitle><jtitle>arXiv.org</jtitle><date>2021-10-11</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>360\(^\circ\) videos convey holistic views for the surroundings of a scene. It provides audio-visual cues beyond pre-determined normal field of views and displays distinctive spatial relations on a sphere. However, previous benchmark tasks for panoramic videos are still limited to evaluate the semantic understanding of audio-visual relationships or spherical spatial property in surroundings. We propose a novel benchmark named Pano-AVQA as a large-scale grounded audio-visual question answering dataset on panoramic videos. Using 5.4K 360\(^\circ\) video clips harvested online, we collect two types of novel question-answer pairs with bounding-box grounding: spherical spatial relation QAs and audio-visual relation QAs. We train several transformer-based models from Pano-AVQA, where the results suggest that our proposed spherical spatial embeddings and multimodal training objectives fairly contribute to a better semantic understanding of the panoramic surroundings on the dataset.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2021-10 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2581109361 |
source | Freely Accessible Journals |
subjects | Benchmarks Datasets Questions Semantics Video |
title | Pano-AVQA: Grounded Audio-Visual Question Answering on 360\(^\circ\) Videos |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T20%3A21%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Pano-AVQA:%20Grounded%20Audio-Visual%20Question%20Answering%20on%20360%5C(%5E%5Ccirc%5C)%20Videos&rft.jtitle=arXiv.org&rft.au=Yun,%20Heeseung&rft.date=2021-10-11&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2581109361%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2581109361&rft_id=info:pmid/&rfr_iscdi=true |