Surrogate model–based inverse parameter estimation in deep drawing using automatic knowledge acquisition
In this paper, we propose a new approach for the simulation-based support of tryout operations in deep drawing which can be schematically classified as automatic knowledge acquisition. The central idea is to identify information maximising sensor positions for draw-in as well as local blank holder f...
Gespeichert in:
Veröffentlicht in: | International journal of advanced manufacturing technology 2021-11, Vol.117 (3-4), p.997-1013 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1013 |
---|---|
container_issue | 3-4 |
container_start_page | 997 |
container_title | International journal of advanced manufacturing technology |
container_volume | 117 |
creator | Ryser, Matthias Neuhauser, Felix M. Hein, Christoph Hora, Pavel Bambach, Markus |
description | In this paper, we propose a new approach for the simulation-based support of tryout operations in deep drawing which can be schematically classified as automatic knowledge acquisition. The central idea is to identify information maximising sensor positions for draw-in as well as local blank holder force sensors by solving the column subset selection problem with respect to the sensor sensitivities. Inverse surrogate models are then trained using the selected sensor signals as predictors and the material and process parameters as targets. The final models are able to observe the drawing process by estimating current material and process parameters, which can then be compared to the target values to identify process corrections. The methodology is examined on an Audi A8L side panel frame using a set of 635 simulations, where 20 out of 21 material and process parameters can be estimated with an
R
2
value greater than 0.9. The result shows that the observational models are not only capable of estimating all but one process parameters with high accuracy, but also allow the determination of material parameters at the same time. Since no assumptions are made about the type of process, sensors, material or process parameters, the methodology proposed can also be applied to other manufacturing processes and use cases. |
doi_str_mv | 10.1007/s00170-021-07642-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2581106547</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2581106547</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-5c203df267464e76386c07e7307425e25e35e814dccdca11e1fd8348d6fed5983</originalsourceid><addsrcrecordid>eNp9kEtOwzAQhi0EEqVwAVaWWBv8im2WqOIlVWIBrC1jT6KUNmnthJYdd-CGnASHILFDGs0s5vvn8SN0yug5o1RfJEqZpoRyRqhWkpPdHpowKQQRlBX7aEK5MkRoZQ7RUUqLjCumzAQtHvsY28p1gFdtgOXXx-eLSxBw3bxBTIDXLroVdBAxpK5eua5um9zEAWCNQ3Tbuqlwn4bs-q4dAI9fm3a7hFABdn7T16keVMfooHTLBCe_dYqeb66fZndk_nB7P7uaEy-U6EjhORWh5EpLJUErYZSnGrSgWvICcogCDJPB--AdY8DKYIQ0QZUQiksjpuhsnLuO7abPV9tF28cmr7S8MIxRVUidKT5SPrYpRSjtOub34rtl1A6e2tFTmz21P57aXRaJUZQy3FQQ_0b_o_oGILN9NA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2581106547</pqid></control><display><type>article</type><title>Surrogate model–based inverse parameter estimation in deep drawing using automatic knowledge acquisition</title><source>Springer Nature - Complete Springer Journals</source><creator>Ryser, Matthias ; Neuhauser, Felix M. ; Hein, Christoph ; Hora, Pavel ; Bambach, Markus</creator><creatorcontrib>Ryser, Matthias ; Neuhauser, Felix M. ; Hein, Christoph ; Hora, Pavel ; Bambach, Markus</creatorcontrib><description>In this paper, we propose a new approach for the simulation-based support of tryout operations in deep drawing which can be schematically classified as automatic knowledge acquisition. The central idea is to identify information maximising sensor positions for draw-in as well as local blank holder force sensors by solving the column subset selection problem with respect to the sensor sensitivities. Inverse surrogate models are then trained using the selected sensor signals as predictors and the material and process parameters as targets. The final models are able to observe the drawing process by estimating current material and process parameters, which can then be compared to the target values to identify process corrections. The methodology is examined on an Audi A8L side panel frame using a set of 635 simulations, where 20 out of 21 material and process parameters can be estimated with an
R
2
value greater than 0.9. The result shows that the observational models are not only capable of estimating all but one process parameters with high accuracy, but also allow the determination of material parameters at the same time. Since no assumptions are made about the type of process, sensors, material or process parameters, the methodology proposed can also be applied to other manufacturing processes and use cases.</description><identifier>ISSN: 0268-3768</identifier><identifier>EISSN: 1433-3015</identifier><identifier>DOI: 10.1007/s00170-021-07642-x</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Blankholders ; CAE) and Design ; Computer-Aided Engineering (CAD ; Deep drawing ; Engineering ; Estimation ; Industrial and Production Engineering ; Knowledge acquisition ; Mathematical models ; Mechanical Engineering ; Media Management ; Original Article ; Parameter estimation ; Parameter identification ; Process parameters ; Sensors ; Signal processing</subject><ispartof>International journal of advanced manufacturing technology, 2021-11, Vol.117 (3-4), p.997-1013</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-5c203df267464e76386c07e7307425e25e35e814dccdca11e1fd8348d6fed5983</citedby><cites>FETCH-LOGICAL-c363t-5c203df267464e76386c07e7307425e25e35e814dccdca11e1fd8348d6fed5983</cites><orcidid>0000-0002-9356-9129</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00170-021-07642-x$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00170-021-07642-x$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Ryser, Matthias</creatorcontrib><creatorcontrib>Neuhauser, Felix M.</creatorcontrib><creatorcontrib>Hein, Christoph</creatorcontrib><creatorcontrib>Hora, Pavel</creatorcontrib><creatorcontrib>Bambach, Markus</creatorcontrib><title>Surrogate model–based inverse parameter estimation in deep drawing using automatic knowledge acquisition</title><title>International journal of advanced manufacturing technology</title><addtitle>Int J Adv Manuf Technol</addtitle><description>In this paper, we propose a new approach for the simulation-based support of tryout operations in deep drawing which can be schematically classified as automatic knowledge acquisition. The central idea is to identify information maximising sensor positions for draw-in as well as local blank holder force sensors by solving the column subset selection problem with respect to the sensor sensitivities. Inverse surrogate models are then trained using the selected sensor signals as predictors and the material and process parameters as targets. The final models are able to observe the drawing process by estimating current material and process parameters, which can then be compared to the target values to identify process corrections. The methodology is examined on an Audi A8L side panel frame using a set of 635 simulations, where 20 out of 21 material and process parameters can be estimated with an
R
2
value greater than 0.9. The result shows that the observational models are not only capable of estimating all but one process parameters with high accuracy, but also allow the determination of material parameters at the same time. Since no assumptions are made about the type of process, sensors, material or process parameters, the methodology proposed can also be applied to other manufacturing processes and use cases.</description><subject>Blankholders</subject><subject>CAE) and Design</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Deep drawing</subject><subject>Engineering</subject><subject>Estimation</subject><subject>Industrial and Production Engineering</subject><subject>Knowledge acquisition</subject><subject>Mathematical models</subject><subject>Mechanical Engineering</subject><subject>Media Management</subject><subject>Original Article</subject><subject>Parameter estimation</subject><subject>Parameter identification</subject><subject>Process parameters</subject><subject>Sensors</subject><subject>Signal processing</subject><issn>0268-3768</issn><issn>1433-3015</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kEtOwzAQhi0EEqVwAVaWWBv8im2WqOIlVWIBrC1jT6KUNmnthJYdd-CGnASHILFDGs0s5vvn8SN0yug5o1RfJEqZpoRyRqhWkpPdHpowKQQRlBX7aEK5MkRoZQ7RUUqLjCumzAQtHvsY28p1gFdtgOXXx-eLSxBw3bxBTIDXLroVdBAxpK5eua5um9zEAWCNQ3Tbuqlwn4bs-q4dAI9fm3a7hFABdn7T16keVMfooHTLBCe_dYqeb66fZndk_nB7P7uaEy-U6EjhORWh5EpLJUErYZSnGrSgWvICcogCDJPB--AdY8DKYIQ0QZUQiksjpuhsnLuO7abPV9tF28cmr7S8MIxRVUidKT5SPrYpRSjtOub34rtl1A6e2tFTmz21P57aXRaJUZQy3FQQ_0b_o_oGILN9NA</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Ryser, Matthias</creator><creator>Neuhauser, Felix M.</creator><creator>Hein, Christoph</creator><creator>Hora, Pavel</creator><creator>Bambach, Markus</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-9356-9129</orcidid></search><sort><creationdate>20211101</creationdate><title>Surrogate model–based inverse parameter estimation in deep drawing using automatic knowledge acquisition</title><author>Ryser, Matthias ; Neuhauser, Felix M. ; Hein, Christoph ; Hora, Pavel ; Bambach, Markus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-5c203df267464e76386c07e7307425e25e35e814dccdca11e1fd8348d6fed5983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Blankholders</topic><topic>CAE) and Design</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Deep drawing</topic><topic>Engineering</topic><topic>Estimation</topic><topic>Industrial and Production Engineering</topic><topic>Knowledge acquisition</topic><topic>Mathematical models</topic><topic>Mechanical Engineering</topic><topic>Media Management</topic><topic>Original Article</topic><topic>Parameter estimation</topic><topic>Parameter identification</topic><topic>Process parameters</topic><topic>Sensors</topic><topic>Signal processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ryser, Matthias</creatorcontrib><creatorcontrib>Neuhauser, Felix M.</creatorcontrib><creatorcontrib>Hein, Christoph</creatorcontrib><creatorcontrib>Hora, Pavel</creatorcontrib><creatorcontrib>Bambach, Markus</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>International journal of advanced manufacturing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ryser, Matthias</au><au>Neuhauser, Felix M.</au><au>Hein, Christoph</au><au>Hora, Pavel</au><au>Bambach, Markus</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surrogate model–based inverse parameter estimation in deep drawing using automatic knowledge acquisition</atitle><jtitle>International journal of advanced manufacturing technology</jtitle><stitle>Int J Adv Manuf Technol</stitle><date>2021-11-01</date><risdate>2021</risdate><volume>117</volume><issue>3-4</issue><spage>997</spage><epage>1013</epage><pages>997-1013</pages><issn>0268-3768</issn><eissn>1433-3015</eissn><abstract>In this paper, we propose a new approach for the simulation-based support of tryout operations in deep drawing which can be schematically classified as automatic knowledge acquisition. The central idea is to identify information maximising sensor positions for draw-in as well as local blank holder force sensors by solving the column subset selection problem with respect to the sensor sensitivities. Inverse surrogate models are then trained using the selected sensor signals as predictors and the material and process parameters as targets. The final models are able to observe the drawing process by estimating current material and process parameters, which can then be compared to the target values to identify process corrections. The methodology is examined on an Audi A8L side panel frame using a set of 635 simulations, where 20 out of 21 material and process parameters can be estimated with an
R
2
value greater than 0.9. The result shows that the observational models are not only capable of estimating all but one process parameters with high accuracy, but also allow the determination of material parameters at the same time. Since no assumptions are made about the type of process, sensors, material or process parameters, the methodology proposed can also be applied to other manufacturing processes and use cases.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00170-021-07642-x</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-9356-9129</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0268-3768 |
ispartof | International journal of advanced manufacturing technology, 2021-11, Vol.117 (3-4), p.997-1013 |
issn | 0268-3768 1433-3015 |
language | eng |
recordid | cdi_proquest_journals_2581106547 |
source | Springer Nature - Complete Springer Journals |
subjects | Blankholders CAE) and Design Computer-Aided Engineering (CAD Deep drawing Engineering Estimation Industrial and Production Engineering Knowledge acquisition Mathematical models Mechanical Engineering Media Management Original Article Parameter estimation Parameter identification Process parameters Sensors Signal processing |
title | Surrogate model–based inverse parameter estimation in deep drawing using automatic knowledge acquisition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T18%3A19%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surrogate%20model%E2%80%93based%20inverse%20parameter%20estimation%20in%20deep%20drawing%20using%20automatic%20knowledge%20acquisition&rft.jtitle=International%20journal%20of%20advanced%20manufacturing%20technology&rft.au=Ryser,%20Matthias&rft.date=2021-11-01&rft.volume=117&rft.issue=3-4&rft.spage=997&rft.epage=1013&rft.pages=997-1013&rft.issn=0268-3768&rft.eissn=1433-3015&rft_id=info:doi/10.1007/s00170-021-07642-x&rft_dat=%3Cproquest_cross%3E2581106547%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2581106547&rft_id=info:pmid/&rfr_iscdi=true |