Machinability study and ANN-MOALO-based multi-response optimization during Eco-Friendly machining of EN-GJL-250 cast iron

The current work examines the performance of Minimum Quantity Lubrication when turning of EN-GJL-250 cast iron compared to dry and wet cooling methods. The Taguchi design L 36 has been chosen for the planification of experimentation. Then, ANOVA has been established after data acquisition in order t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of advanced manufacturing technology 2021-11, Vol.117 (3-4), p.1179-1192
Hauptverfasser: Laouissi, Aissa, Nouioua, Mourad, Yallese, Mohamed Athmane, Abderazek, Hammoudi, Maouche, Hichem, Bouhalais, Mohamed Lamine
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1192
container_issue 3-4
container_start_page 1179
container_title International journal of advanced manufacturing technology
container_volume 117
creator Laouissi, Aissa
Nouioua, Mourad
Yallese, Mohamed Athmane
Abderazek, Hammoudi
Maouche, Hichem
Bouhalais, Mohamed Lamine
description The current work examines the performance of Minimum Quantity Lubrication when turning of EN-GJL-250 cast iron compared to dry and wet cooling methods. The Taguchi design L 36 has been chosen for the planification of experimentation. Then, ANOVA has been established after data acquisition in order to define the effect of cutting conditions such as the used inserts, cutting depth, feed rate and cutting speed on the studied factors. Furthermore, the surface roughness has been deeply studied using 3D roughness topography to evaluate the MQL effect. Finally, the approach ANN-MOALO was found to be helpful for future industrial applications for predicting part quality and power consumption with accurate results and optimizing cutting parameters that helps to achieve the best production control.
doi_str_mv 10.1007/s00170-021-07759-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2581106356</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2581106356</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-a1274b211c38920de737b890ac66e747348c91e0a84cc917f78366d4a053519a3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwA6wssTaM48R2llXV8lAfG1hbjuOAqzQOdrJIv560RWLHakajc-9IB6F7Co8UQDxFACqAQEIJCJHl5HCBJjRljDCg2SWaQMIlYYLLa3QT427EOeVygoa1Nl-u0YWrXTfg2PXlgHVT4tlmQ9bb2WpLCh1tifd93TkSbGx9Ey32bef27qA75xtc9sE1n3hhPFkGZ5uyHvD-1Hs8-wovNuT5bUWSDLDRscMu-OYWXVW6jvbud07Rx3LxPn8hq-3z63y2IobRvCOaJiItEkoNk3kCpRVMFDIHbTi3IhUslSanFrRMzbiISkjGeZlqyFhGc82m6OHc2wb_3dvYqZ3vQzO-VEkmKQXOMj5SyZkywccYbKXa4PY6DIqCOipWZ8VqVKxOitVhDLFzKLZHATb8Vf-T-gFzRH3d</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2581106356</pqid></control><display><type>article</type><title>Machinability study and ANN-MOALO-based multi-response optimization during Eco-Friendly machining of EN-GJL-250 cast iron</title><source>SpringerLink Journals - AutoHoldings</source><creator>Laouissi, Aissa ; Nouioua, Mourad ; Yallese, Mohamed Athmane ; Abderazek, Hammoudi ; Maouche, Hichem ; Bouhalais, Mohamed Lamine</creator><creatorcontrib>Laouissi, Aissa ; Nouioua, Mourad ; Yallese, Mohamed Athmane ; Abderazek, Hammoudi ; Maouche, Hichem ; Bouhalais, Mohamed Lamine</creatorcontrib><description>The current work examines the performance of Minimum Quantity Lubrication when turning of EN-GJL-250 cast iron compared to dry and wet cooling methods. The Taguchi design L 36 has been chosen for the planification of experimentation. Then, ANOVA has been established after data acquisition in order to define the effect of cutting conditions such as the used inserts, cutting depth, feed rate and cutting speed on the studied factors. Furthermore, the surface roughness has been deeply studied using 3D roughness topography to evaluate the MQL effect. Finally, the approach ANN-MOALO was found to be helpful for future industrial applications for predicting part quality and power consumption with accurate results and optimizing cutting parameters that helps to achieve the best production control.</description><identifier>ISSN: 0268-3768</identifier><identifier>EISSN: 1433-3015</identifier><identifier>DOI: 10.1007/s00170-021-07759-z</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Advanced manufacturing technologies ; CAE) and Design ; Cast iron ; Computer-Aided Engineering (CAD ; Cooling ; Cost control ; Cutting parameters ; Cutting speed ; Cutting tools ; Design of experiments ; Efficiency ; Engineering ; Experimentation ; Feed rate ; Graphite ; Industrial and Production Engineering ; Industrial applications ; Inserts ; Lubricants &amp; lubrication ; Machinability ; Manufacturing ; Mechanical Engineering ; Media Management ; Optimization ; Original Article ; Power consumption ; Production controls ; Productivity ; Surface roughness ; Taguchi methods ; Turning (machining)</subject><ispartof>International journal of advanced manufacturing technology, 2021-11, Vol.117 (3-4), p.1179-1192</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-a1274b211c38920de737b890ac66e747348c91e0a84cc917f78366d4a053519a3</citedby><cites>FETCH-LOGICAL-c319t-a1274b211c38920de737b890ac66e747348c91e0a84cc917f78366d4a053519a3</cites><orcidid>0000-0002-5723-3863</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00170-021-07759-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00170-021-07759-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Laouissi, Aissa</creatorcontrib><creatorcontrib>Nouioua, Mourad</creatorcontrib><creatorcontrib>Yallese, Mohamed Athmane</creatorcontrib><creatorcontrib>Abderazek, Hammoudi</creatorcontrib><creatorcontrib>Maouche, Hichem</creatorcontrib><creatorcontrib>Bouhalais, Mohamed Lamine</creatorcontrib><title>Machinability study and ANN-MOALO-based multi-response optimization during Eco-Friendly machining of EN-GJL-250 cast iron</title><title>International journal of advanced manufacturing technology</title><addtitle>Int J Adv Manuf Technol</addtitle><description>The current work examines the performance of Minimum Quantity Lubrication when turning of EN-GJL-250 cast iron compared to dry and wet cooling methods. The Taguchi design L 36 has been chosen for the planification of experimentation. Then, ANOVA has been established after data acquisition in order to define the effect of cutting conditions such as the used inserts, cutting depth, feed rate and cutting speed on the studied factors. Furthermore, the surface roughness has been deeply studied using 3D roughness topography to evaluate the MQL effect. Finally, the approach ANN-MOALO was found to be helpful for future industrial applications for predicting part quality and power consumption with accurate results and optimizing cutting parameters that helps to achieve the best production control.</description><subject>Advanced manufacturing technologies</subject><subject>CAE) and Design</subject><subject>Cast iron</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Cooling</subject><subject>Cost control</subject><subject>Cutting parameters</subject><subject>Cutting speed</subject><subject>Cutting tools</subject><subject>Design of experiments</subject><subject>Efficiency</subject><subject>Engineering</subject><subject>Experimentation</subject><subject>Feed rate</subject><subject>Graphite</subject><subject>Industrial and Production Engineering</subject><subject>Industrial applications</subject><subject>Inserts</subject><subject>Lubricants &amp; lubrication</subject><subject>Machinability</subject><subject>Manufacturing</subject><subject>Mechanical Engineering</subject><subject>Media Management</subject><subject>Optimization</subject><subject>Original Article</subject><subject>Power consumption</subject><subject>Production controls</subject><subject>Productivity</subject><subject>Surface roughness</subject><subject>Taguchi methods</subject><subject>Turning (machining)</subject><issn>0268-3768</issn><issn>1433-3015</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kMtOwzAQRS0EEqXwA6wssTaM48R2llXV8lAfG1hbjuOAqzQOdrJIv560RWLHakajc-9IB6F7Co8UQDxFACqAQEIJCJHl5HCBJjRljDCg2SWaQMIlYYLLa3QT427EOeVygoa1Nl-u0YWrXTfg2PXlgHVT4tlmQ9bb2WpLCh1tifd93TkSbGx9Ey32bef27qA75xtc9sE1n3hhPFkGZ5uyHvD-1Hs8-wovNuT5bUWSDLDRscMu-OYWXVW6jvbud07Rx3LxPn8hq-3z63y2IobRvCOaJiItEkoNk3kCpRVMFDIHbTi3IhUslSanFrRMzbiISkjGeZlqyFhGc82m6OHc2wb_3dvYqZ3vQzO-VEkmKQXOMj5SyZkywccYbKXa4PY6DIqCOipWZ8VqVKxOitVhDLFzKLZHATb8Vf-T-gFzRH3d</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Laouissi, Aissa</creator><creator>Nouioua, Mourad</creator><creator>Yallese, Mohamed Athmane</creator><creator>Abderazek, Hammoudi</creator><creator>Maouche, Hichem</creator><creator>Bouhalais, Mohamed Lamine</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-5723-3863</orcidid></search><sort><creationdate>20211101</creationdate><title>Machinability study and ANN-MOALO-based multi-response optimization during Eco-Friendly machining of EN-GJL-250 cast iron</title><author>Laouissi, Aissa ; Nouioua, Mourad ; Yallese, Mohamed Athmane ; Abderazek, Hammoudi ; Maouche, Hichem ; Bouhalais, Mohamed Lamine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-a1274b211c38920de737b890ac66e747348c91e0a84cc917f78366d4a053519a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Advanced manufacturing technologies</topic><topic>CAE) and Design</topic><topic>Cast iron</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Cooling</topic><topic>Cost control</topic><topic>Cutting parameters</topic><topic>Cutting speed</topic><topic>Cutting tools</topic><topic>Design of experiments</topic><topic>Efficiency</topic><topic>Engineering</topic><topic>Experimentation</topic><topic>Feed rate</topic><topic>Graphite</topic><topic>Industrial and Production Engineering</topic><topic>Industrial applications</topic><topic>Inserts</topic><topic>Lubricants &amp; lubrication</topic><topic>Machinability</topic><topic>Manufacturing</topic><topic>Mechanical Engineering</topic><topic>Media Management</topic><topic>Optimization</topic><topic>Original Article</topic><topic>Power consumption</topic><topic>Production controls</topic><topic>Productivity</topic><topic>Surface roughness</topic><topic>Taguchi methods</topic><topic>Turning (machining)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Laouissi, Aissa</creatorcontrib><creatorcontrib>Nouioua, Mourad</creatorcontrib><creatorcontrib>Yallese, Mohamed Athmane</creatorcontrib><creatorcontrib>Abderazek, Hammoudi</creatorcontrib><creatorcontrib>Maouche, Hichem</creatorcontrib><creatorcontrib>Bouhalais, Mohamed Lamine</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>International journal of advanced manufacturing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Laouissi, Aissa</au><au>Nouioua, Mourad</au><au>Yallese, Mohamed Athmane</au><au>Abderazek, Hammoudi</au><au>Maouche, Hichem</au><au>Bouhalais, Mohamed Lamine</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machinability study and ANN-MOALO-based multi-response optimization during Eco-Friendly machining of EN-GJL-250 cast iron</atitle><jtitle>International journal of advanced manufacturing technology</jtitle><stitle>Int J Adv Manuf Technol</stitle><date>2021-11-01</date><risdate>2021</risdate><volume>117</volume><issue>3-4</issue><spage>1179</spage><epage>1192</epage><pages>1179-1192</pages><issn>0268-3768</issn><eissn>1433-3015</eissn><abstract>The current work examines the performance of Minimum Quantity Lubrication when turning of EN-GJL-250 cast iron compared to dry and wet cooling methods. The Taguchi design L 36 has been chosen for the planification of experimentation. Then, ANOVA has been established after data acquisition in order to define the effect of cutting conditions such as the used inserts, cutting depth, feed rate and cutting speed on the studied factors. Furthermore, the surface roughness has been deeply studied using 3D roughness topography to evaluate the MQL effect. Finally, the approach ANN-MOALO was found to be helpful for future industrial applications for predicting part quality and power consumption with accurate results and optimizing cutting parameters that helps to achieve the best production control.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00170-021-07759-z</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-5723-3863</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0268-3768
ispartof International journal of advanced manufacturing technology, 2021-11, Vol.117 (3-4), p.1179-1192
issn 0268-3768
1433-3015
language eng
recordid cdi_proquest_journals_2581106356
source SpringerLink Journals - AutoHoldings
subjects Advanced manufacturing technologies
CAE) and Design
Cast iron
Computer-Aided Engineering (CAD
Cooling
Cost control
Cutting parameters
Cutting speed
Cutting tools
Design of experiments
Efficiency
Engineering
Experimentation
Feed rate
Graphite
Industrial and Production Engineering
Industrial applications
Inserts
Lubricants & lubrication
Machinability
Manufacturing
Mechanical Engineering
Media Management
Optimization
Original Article
Power consumption
Production controls
Productivity
Surface roughness
Taguchi methods
Turning (machining)
title Machinability study and ANN-MOALO-based multi-response optimization during Eco-Friendly machining of EN-GJL-250 cast iron
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T02%3A55%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machinability%20study%20and%20ANN-MOALO-based%20multi-response%20optimization%20during%20Eco-Friendly%20machining%20of%20EN-GJL-250%20cast%20iron&rft.jtitle=International%20journal%20of%20advanced%20manufacturing%20technology&rft.au=Laouissi,%20Aissa&rft.date=2021-11-01&rft.volume=117&rft.issue=3-4&rft.spage=1179&rft.epage=1192&rft.pages=1179-1192&rft.issn=0268-3768&rft.eissn=1433-3015&rft_id=info:doi/10.1007/s00170-021-07759-z&rft_dat=%3Cproquest_cross%3E2581106356%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2581106356&rft_id=info:pmid/&rfr_iscdi=true