Heteroepitaxial van der Waals semiconductor superlattices

A broad range of transition metal dichalcogenide (TMDC) semiconductors are available as monolayer (ML) crystals, so the precise integration of each kind into van der Waals (vdW) superlattices (SLs) could enable the realization of novel structures with previously unexplored functionalities. Here we r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature nanotechnology 2021-10, Vol.16 (10), p.1092-1098
Hauptverfasser: Jin, Gangtae, Lee, Chang-Soo, Okello, Odongo F. N., Lee, Suk-Ho, Park, Min Yeong, Cha, Soonyoung, Seo, Seung-Young, Moon, Gunho, Min, Seok Young, Yang, Dong-Hwan, Han, Cheolhee, Ahn, Hyungju, Lee, Jekwan, Choi, Hyunyong, Kim, Jonghwan, Choi, Si-Young, Jo, Moon-Ho
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1098
container_issue 10
container_start_page 1092
container_title Nature nanotechnology
container_volume 16
creator Jin, Gangtae
Lee, Chang-Soo
Okello, Odongo F. N.
Lee, Suk-Ho
Park, Min Yeong
Cha, Soonyoung
Seo, Seung-Young
Moon, Gunho
Min, Seok Young
Yang, Dong-Hwan
Han, Cheolhee
Ahn, Hyungju
Lee, Jekwan
Choi, Hyunyong
Kim, Jonghwan
Choi, Si-Young
Jo, Moon-Ho
description A broad range of transition metal dichalcogenide (TMDC) semiconductors are available as monolayer (ML) crystals, so the precise integration of each kind into van der Waals (vdW) superlattices (SLs) could enable the realization of novel structures with previously unexplored functionalities. Here we report the atomic layer-by-layer epitaxial growth of vdW SLs with programmable stacking periodicities, composed of more than two kinds of dissimilar TMDC MLs, such as MoS 2 , WS 2 and WSe 2 . Using kinetics-controlled vdW epitaxy in the near-equilibrium limit by metal–organic chemical vapour depositions, we achieved precise ML-by-ML stacking, free of interlayer atomic mixing, which resulted in tunable two-dimensional vdW electronic systems. As an example, by exploiting the series of type II band alignments at coherent two-dimensional vdW heterointerfaces, we demonstrated valley-polarized carrier excitations—one of the most distinctive electronic features in vdW ML semiconductors—which scale with the stack numbers n in our (MoS 2 /WS 2 ) n SLs on optical excitations. Kinetics-controlled van der Waals epitaxy in the near-equilibrium limit by metal–organic chemical vapour deposition enables precise layer-by-layer stacking of dissimilar transition metal dichalcogenides.
doi_str_mv 10.1038/s41565-021-00942-z
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_journals_2581099636</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2581099636</sourcerecordid><originalsourceid>FETCH-LOGICAL-p180t-32a836171459ad0588d525210ff01af96315af02c439d80eb1fe94ad4f2284763</originalsourceid><addsrcrecordid>eNpFkE1LAzEQhoMotlb_gAdZ8BydycducpRirVDwongM6W4iW9rdNcmK9te7tVVP88I8vMM8hFwi3CBwdRsFylxSYEgBtGB0e0TGWAhFOdfy-C-rYkTOYlwBSKaZOCUjLlhe8FyPiZ675ELrujrZz9qusw_bZJUL2au165hFt6nLtqn6MrUhi33nwtqmVJcunpMTPyDu4jAn5GV2_zyd08XTw-P0bkE7VJAoZ1bxHAsUUtsKpFKVZJIheA9ovc45SuuBlYLrSoFbonda2Ep4xpQocj4h1_veLrTvvYvJrNo-NMNJw6RC0EPFjro6UP1y4yrThXpjw5f5_XQA-B6Iw6p5c-G_BsHsfJq9TzP4ND8-zZZ_A24iZPs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2581099636</pqid></control><display><type>article</type><title>Heteroepitaxial van der Waals semiconductor superlattices</title><source>Nature</source><source>SpringerLink Journals - AutoHoldings</source><creator>Jin, Gangtae ; Lee, Chang-Soo ; Okello, Odongo F. N. ; Lee, Suk-Ho ; Park, Min Yeong ; Cha, Soonyoung ; Seo, Seung-Young ; Moon, Gunho ; Min, Seok Young ; Yang, Dong-Hwan ; Han, Cheolhee ; Ahn, Hyungju ; Lee, Jekwan ; Choi, Hyunyong ; Kim, Jonghwan ; Choi, Si-Young ; Jo, Moon-Ho</creator><creatorcontrib>Jin, Gangtae ; Lee, Chang-Soo ; Okello, Odongo F. N. ; Lee, Suk-Ho ; Park, Min Yeong ; Cha, Soonyoung ; Seo, Seung-Young ; Moon, Gunho ; Min, Seok Young ; Yang, Dong-Hwan ; Han, Cheolhee ; Ahn, Hyungju ; Lee, Jekwan ; Choi, Hyunyong ; Kim, Jonghwan ; Choi, Si-Young ; Jo, Moon-Ho</creatorcontrib><description>A broad range of transition metal dichalcogenide (TMDC) semiconductors are available as monolayer (ML) crystals, so the precise integration of each kind into van der Waals (vdW) superlattices (SLs) could enable the realization of novel structures with previously unexplored functionalities. Here we report the atomic layer-by-layer epitaxial growth of vdW SLs with programmable stacking periodicities, composed of more than two kinds of dissimilar TMDC MLs, such as MoS 2 , WS 2 and WSe 2 . Using kinetics-controlled vdW epitaxy in the near-equilibrium limit by metal–organic chemical vapour depositions, we achieved precise ML-by-ML stacking, free of interlayer atomic mixing, which resulted in tunable two-dimensional vdW electronic systems. As an example, by exploiting the series of type II band alignments at coherent two-dimensional vdW heterointerfaces, we demonstrated valley-polarized carrier excitations—one of the most distinctive electronic features in vdW ML semiconductors—which scale with the stack numbers n in our (MoS 2 /WS 2 ) n SLs on optical excitations. Kinetics-controlled van der Waals epitaxy in the near-equilibrium limit by metal–organic chemical vapour deposition enables precise layer-by-layer stacking of dissimilar transition metal dichalcogenides.</description><identifier>ISSN: 1748-3387</identifier><identifier>EISSN: 1748-3395</identifier><identifier>DOI: 10.1038/s41565-021-00942-z</identifier><identifier>PMID: 34267369</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>140/125 ; 140/133 ; 639/301/357/1018 ; 639/925/357/1018 ; Chalcogenides ; Chemistry and Materials Science ; Crystals ; Dissimilar metals ; Electronic systems ; Epitaxial growth ; Epitaxy ; Excitation ; Interlayers ; Kinetics ; Materials Science ; Metalorganic chemical vapor deposition ; Metals ; Molybdenum disulfide ; Nanotechnology ; Nanotechnology and Microengineering ; Organic chemicals ; Organic chemistry ; Semiconductors ; Stacking ; Superlattices ; Transition metal compounds ; Tungsten disulfide</subject><ispartof>Nature nanotechnology, 2021-10, Vol.16 (10), p.1092-1098</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021</rights><rights>2021. The Author(s), under exclusive licence to Springer Nature Limited.</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-p180t-32a836171459ad0588d525210ff01af96315af02c439d80eb1fe94ad4f2284763</cites><orcidid>0000-0001-8634-2623 ; 0000-0003-1648-142X ; 0000-0003-3295-1049 ; 0000-0002-3160-358X ; 0000-0002-8936-9407</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41565-021-00942-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41565-021-00942-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34267369$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jin, Gangtae</creatorcontrib><creatorcontrib>Lee, Chang-Soo</creatorcontrib><creatorcontrib>Okello, Odongo F. N.</creatorcontrib><creatorcontrib>Lee, Suk-Ho</creatorcontrib><creatorcontrib>Park, Min Yeong</creatorcontrib><creatorcontrib>Cha, Soonyoung</creatorcontrib><creatorcontrib>Seo, Seung-Young</creatorcontrib><creatorcontrib>Moon, Gunho</creatorcontrib><creatorcontrib>Min, Seok Young</creatorcontrib><creatorcontrib>Yang, Dong-Hwan</creatorcontrib><creatorcontrib>Han, Cheolhee</creatorcontrib><creatorcontrib>Ahn, Hyungju</creatorcontrib><creatorcontrib>Lee, Jekwan</creatorcontrib><creatorcontrib>Choi, Hyunyong</creatorcontrib><creatorcontrib>Kim, Jonghwan</creatorcontrib><creatorcontrib>Choi, Si-Young</creatorcontrib><creatorcontrib>Jo, Moon-Ho</creatorcontrib><title>Heteroepitaxial van der Waals semiconductor superlattices</title><title>Nature nanotechnology</title><addtitle>Nat. Nanotechnol</addtitle><addtitle>Nat Nanotechnol</addtitle><description>A broad range of transition metal dichalcogenide (TMDC) semiconductors are available as monolayer (ML) crystals, so the precise integration of each kind into van der Waals (vdW) superlattices (SLs) could enable the realization of novel structures with previously unexplored functionalities. Here we report the atomic layer-by-layer epitaxial growth of vdW SLs with programmable stacking periodicities, composed of more than two kinds of dissimilar TMDC MLs, such as MoS 2 , WS 2 and WSe 2 . Using kinetics-controlled vdW epitaxy in the near-equilibrium limit by metal–organic chemical vapour depositions, we achieved precise ML-by-ML stacking, free of interlayer atomic mixing, which resulted in tunable two-dimensional vdW electronic systems. As an example, by exploiting the series of type II band alignments at coherent two-dimensional vdW heterointerfaces, we demonstrated valley-polarized carrier excitations—one of the most distinctive electronic features in vdW ML semiconductors—which scale with the stack numbers n in our (MoS 2 /WS 2 ) n SLs on optical excitations. Kinetics-controlled van der Waals epitaxy in the near-equilibrium limit by metal–organic chemical vapour deposition enables precise layer-by-layer stacking of dissimilar transition metal dichalcogenides.</description><subject>140/125</subject><subject>140/133</subject><subject>639/301/357/1018</subject><subject>639/925/357/1018</subject><subject>Chalcogenides</subject><subject>Chemistry and Materials Science</subject><subject>Crystals</subject><subject>Dissimilar metals</subject><subject>Electronic systems</subject><subject>Epitaxial growth</subject><subject>Epitaxy</subject><subject>Excitation</subject><subject>Interlayers</subject><subject>Kinetics</subject><subject>Materials Science</subject><subject>Metalorganic chemical vapor deposition</subject><subject>Metals</subject><subject>Molybdenum disulfide</subject><subject>Nanotechnology</subject><subject>Nanotechnology and Microengineering</subject><subject>Organic chemicals</subject><subject>Organic chemistry</subject><subject>Semiconductors</subject><subject>Stacking</subject><subject>Superlattices</subject><subject>Transition metal compounds</subject><subject>Tungsten disulfide</subject><issn>1748-3387</issn><issn>1748-3395</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpFkE1LAzEQhoMotlb_gAdZ8BydycducpRirVDwongM6W4iW9rdNcmK9te7tVVP88I8vMM8hFwi3CBwdRsFylxSYEgBtGB0e0TGWAhFOdfy-C-rYkTOYlwBSKaZOCUjLlhe8FyPiZ675ELrujrZz9qusw_bZJUL2au165hFt6nLtqn6MrUhi33nwtqmVJcunpMTPyDu4jAn5GV2_zyd08XTw-P0bkE7VJAoZ1bxHAsUUtsKpFKVZJIheA9ovc45SuuBlYLrSoFbonda2Ep4xpQocj4h1_veLrTvvYvJrNo-NMNJw6RC0EPFjro6UP1y4yrThXpjw5f5_XQA-B6Iw6p5c-G_BsHsfJq9TzP4ND8-zZZ_A24iZPs</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Jin, Gangtae</creator><creator>Lee, Chang-Soo</creator><creator>Okello, Odongo F. N.</creator><creator>Lee, Suk-Ho</creator><creator>Park, Min Yeong</creator><creator>Cha, Soonyoung</creator><creator>Seo, Seung-Young</creator><creator>Moon, Gunho</creator><creator>Min, Seok Young</creator><creator>Yang, Dong-Hwan</creator><creator>Han, Cheolhee</creator><creator>Ahn, Hyungju</creator><creator>Lee, Jekwan</creator><creator>Choi, Hyunyong</creator><creator>Kim, Jonghwan</creator><creator>Choi, Si-Young</creator><creator>Jo, Moon-Ho</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>3V.</scope><scope>7QO</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-8634-2623</orcidid><orcidid>https://orcid.org/0000-0003-1648-142X</orcidid><orcidid>https://orcid.org/0000-0003-3295-1049</orcidid><orcidid>https://orcid.org/0000-0002-3160-358X</orcidid><orcidid>https://orcid.org/0000-0002-8936-9407</orcidid></search><sort><creationdate>20211001</creationdate><title>Heteroepitaxial van der Waals semiconductor superlattices</title><author>Jin, Gangtae ; Lee, Chang-Soo ; Okello, Odongo F. N. ; Lee, Suk-Ho ; Park, Min Yeong ; Cha, Soonyoung ; Seo, Seung-Young ; Moon, Gunho ; Min, Seok Young ; Yang, Dong-Hwan ; Han, Cheolhee ; Ahn, Hyungju ; Lee, Jekwan ; Choi, Hyunyong ; Kim, Jonghwan ; Choi, Si-Young ; Jo, Moon-Ho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p180t-32a836171459ad0588d525210ff01af96315af02c439d80eb1fe94ad4f2284763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>140/125</topic><topic>140/133</topic><topic>639/301/357/1018</topic><topic>639/925/357/1018</topic><topic>Chalcogenides</topic><topic>Chemistry and Materials Science</topic><topic>Crystals</topic><topic>Dissimilar metals</topic><topic>Electronic systems</topic><topic>Epitaxial growth</topic><topic>Epitaxy</topic><topic>Excitation</topic><topic>Interlayers</topic><topic>Kinetics</topic><topic>Materials Science</topic><topic>Metalorganic chemical vapor deposition</topic><topic>Metals</topic><topic>Molybdenum disulfide</topic><topic>Nanotechnology</topic><topic>Nanotechnology and Microengineering</topic><topic>Organic chemicals</topic><topic>Organic chemistry</topic><topic>Semiconductors</topic><topic>Stacking</topic><topic>Superlattices</topic><topic>Transition metal compounds</topic><topic>Tungsten disulfide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jin, Gangtae</creatorcontrib><creatorcontrib>Lee, Chang-Soo</creatorcontrib><creatorcontrib>Okello, Odongo F. N.</creatorcontrib><creatorcontrib>Lee, Suk-Ho</creatorcontrib><creatorcontrib>Park, Min Yeong</creatorcontrib><creatorcontrib>Cha, Soonyoung</creatorcontrib><creatorcontrib>Seo, Seung-Young</creatorcontrib><creatorcontrib>Moon, Gunho</creatorcontrib><creatorcontrib>Min, Seok Young</creatorcontrib><creatorcontrib>Yang, Dong-Hwan</creatorcontrib><creatorcontrib>Han, Cheolhee</creatorcontrib><creatorcontrib>Ahn, Hyungju</creatorcontrib><creatorcontrib>Lee, Jekwan</creatorcontrib><creatorcontrib>Choi, Hyunyong</creatorcontrib><creatorcontrib>Kim, Jonghwan</creatorcontrib><creatorcontrib>Choi, Si-Young</creatorcontrib><creatorcontrib>Jo, Moon-Ho</creatorcontrib><collection>PubMed</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Nature nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jin, Gangtae</au><au>Lee, Chang-Soo</au><au>Okello, Odongo F. N.</au><au>Lee, Suk-Ho</au><au>Park, Min Yeong</au><au>Cha, Soonyoung</au><au>Seo, Seung-Young</au><au>Moon, Gunho</au><au>Min, Seok Young</au><au>Yang, Dong-Hwan</au><au>Han, Cheolhee</au><au>Ahn, Hyungju</au><au>Lee, Jekwan</au><au>Choi, Hyunyong</au><au>Kim, Jonghwan</au><au>Choi, Si-Young</au><au>Jo, Moon-Ho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heteroepitaxial van der Waals semiconductor superlattices</atitle><jtitle>Nature nanotechnology</jtitle><stitle>Nat. Nanotechnol</stitle><addtitle>Nat Nanotechnol</addtitle><date>2021-10-01</date><risdate>2021</risdate><volume>16</volume><issue>10</issue><spage>1092</spage><epage>1098</epage><pages>1092-1098</pages><issn>1748-3387</issn><eissn>1748-3395</eissn><abstract>A broad range of transition metal dichalcogenide (TMDC) semiconductors are available as monolayer (ML) crystals, so the precise integration of each kind into van der Waals (vdW) superlattices (SLs) could enable the realization of novel structures with previously unexplored functionalities. Here we report the atomic layer-by-layer epitaxial growth of vdW SLs with programmable stacking periodicities, composed of more than two kinds of dissimilar TMDC MLs, such as MoS 2 , WS 2 and WSe 2 . Using kinetics-controlled vdW epitaxy in the near-equilibrium limit by metal–organic chemical vapour depositions, we achieved precise ML-by-ML stacking, free of interlayer atomic mixing, which resulted in tunable two-dimensional vdW electronic systems. As an example, by exploiting the series of type II band alignments at coherent two-dimensional vdW heterointerfaces, we demonstrated valley-polarized carrier excitations—one of the most distinctive electronic features in vdW ML semiconductors—which scale with the stack numbers n in our (MoS 2 /WS 2 ) n SLs on optical excitations. Kinetics-controlled van der Waals epitaxy in the near-equilibrium limit by metal–organic chemical vapour deposition enables precise layer-by-layer stacking of dissimilar transition metal dichalcogenides.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>34267369</pmid><doi>10.1038/s41565-021-00942-z</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-8634-2623</orcidid><orcidid>https://orcid.org/0000-0003-1648-142X</orcidid><orcidid>https://orcid.org/0000-0003-3295-1049</orcidid><orcidid>https://orcid.org/0000-0002-3160-358X</orcidid><orcidid>https://orcid.org/0000-0002-8936-9407</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1748-3387
ispartof Nature nanotechnology, 2021-10, Vol.16 (10), p.1092-1098
issn 1748-3387
1748-3395
language eng
recordid cdi_proquest_journals_2581099636
source Nature; SpringerLink Journals - AutoHoldings
subjects 140/125
140/133
639/301/357/1018
639/925/357/1018
Chalcogenides
Chemistry and Materials Science
Crystals
Dissimilar metals
Electronic systems
Epitaxial growth
Epitaxy
Excitation
Interlayers
Kinetics
Materials Science
Metalorganic chemical vapor deposition
Metals
Molybdenum disulfide
Nanotechnology
Nanotechnology and Microengineering
Organic chemicals
Organic chemistry
Semiconductors
Stacking
Superlattices
Transition metal compounds
Tungsten disulfide
title Heteroepitaxial van der Waals semiconductor superlattices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T08%3A07%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heteroepitaxial%20van%20der%20Waals%20semiconductor%20superlattices&rft.jtitle=Nature%20nanotechnology&rft.au=Jin,%20Gangtae&rft.date=2021-10-01&rft.volume=16&rft.issue=10&rft.spage=1092&rft.epage=1098&rft.pages=1092-1098&rft.issn=1748-3387&rft.eissn=1748-3395&rft_id=info:doi/10.1038/s41565-021-00942-z&rft_dat=%3Cproquest_pubme%3E2581099636%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2581099636&rft_id=info:pmid/34267369&rfr_iscdi=true