Heteroepitaxial van der Waals semiconductor superlattices
A broad range of transition metal dichalcogenide (TMDC) semiconductors are available as monolayer (ML) crystals, so the precise integration of each kind into van der Waals (vdW) superlattices (SLs) could enable the realization of novel structures with previously unexplored functionalities. Here we r...
Gespeichert in:
Veröffentlicht in: | Nature nanotechnology 2021-10, Vol.16 (10), p.1092-1098 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1098 |
---|---|
container_issue | 10 |
container_start_page | 1092 |
container_title | Nature nanotechnology |
container_volume | 16 |
creator | Jin, Gangtae Lee, Chang-Soo Okello, Odongo F. N. Lee, Suk-Ho Park, Min Yeong Cha, Soonyoung Seo, Seung-Young Moon, Gunho Min, Seok Young Yang, Dong-Hwan Han, Cheolhee Ahn, Hyungju Lee, Jekwan Choi, Hyunyong Kim, Jonghwan Choi, Si-Young Jo, Moon-Ho |
description | A broad range of transition metal dichalcogenide (TMDC) semiconductors are available as monolayer (ML) crystals, so the precise integration of each kind into van der Waals (vdW) superlattices (SLs) could enable the realization of novel structures with previously unexplored functionalities. Here we report the atomic layer-by-layer epitaxial growth of vdW SLs with programmable stacking periodicities, composed of more than two kinds of dissimilar TMDC MLs, such as MoS
2
, WS
2
and WSe
2
. Using kinetics-controlled vdW epitaxy in the near-equilibrium limit by metal–organic chemical vapour depositions, we achieved precise ML-by-ML stacking, free of interlayer atomic mixing, which resulted in tunable two-dimensional vdW electronic systems. As an example, by exploiting the series of type II band alignments at coherent two-dimensional vdW heterointerfaces, we demonstrated valley-polarized carrier excitations—one of the most distinctive electronic features in vdW ML semiconductors—which scale with the stack numbers
n
in our (MoS
2
/WS
2
)
n
SLs on optical excitations.
Kinetics-controlled van der Waals epitaxy in the near-equilibrium limit by metal–organic chemical vapour deposition enables precise layer-by-layer stacking of dissimilar transition metal dichalcogenides. |
doi_str_mv | 10.1038/s41565-021-00942-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_journals_2581099636</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2581099636</sourcerecordid><originalsourceid>FETCH-LOGICAL-p180t-32a836171459ad0588d525210ff01af96315af02c439d80eb1fe94ad4f2284763</originalsourceid><addsrcrecordid>eNpFkE1LAzEQhoMotlb_gAdZ8BydycducpRirVDwongM6W4iW9rdNcmK9te7tVVP88I8vMM8hFwi3CBwdRsFylxSYEgBtGB0e0TGWAhFOdfy-C-rYkTOYlwBSKaZOCUjLlhe8FyPiZ675ELrujrZz9qusw_bZJUL2au165hFt6nLtqn6MrUhi33nwtqmVJcunpMTPyDu4jAn5GV2_zyd08XTw-P0bkE7VJAoZ1bxHAsUUtsKpFKVZJIheA9ovc45SuuBlYLrSoFbonda2Ep4xpQocj4h1_veLrTvvYvJrNo-NMNJw6RC0EPFjro6UP1y4yrThXpjw5f5_XQA-B6Iw6p5c-G_BsHsfJq9TzP4ND8-zZZ_A24iZPs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2581099636</pqid></control><display><type>article</type><title>Heteroepitaxial van der Waals semiconductor superlattices</title><source>Nature</source><source>SpringerLink Journals - AutoHoldings</source><creator>Jin, Gangtae ; Lee, Chang-Soo ; Okello, Odongo F. N. ; Lee, Suk-Ho ; Park, Min Yeong ; Cha, Soonyoung ; Seo, Seung-Young ; Moon, Gunho ; Min, Seok Young ; Yang, Dong-Hwan ; Han, Cheolhee ; Ahn, Hyungju ; Lee, Jekwan ; Choi, Hyunyong ; Kim, Jonghwan ; Choi, Si-Young ; Jo, Moon-Ho</creator><creatorcontrib>Jin, Gangtae ; Lee, Chang-Soo ; Okello, Odongo F. N. ; Lee, Suk-Ho ; Park, Min Yeong ; Cha, Soonyoung ; Seo, Seung-Young ; Moon, Gunho ; Min, Seok Young ; Yang, Dong-Hwan ; Han, Cheolhee ; Ahn, Hyungju ; Lee, Jekwan ; Choi, Hyunyong ; Kim, Jonghwan ; Choi, Si-Young ; Jo, Moon-Ho</creatorcontrib><description>A broad range of transition metal dichalcogenide (TMDC) semiconductors are available as monolayer (ML) crystals, so the precise integration of each kind into van der Waals (vdW) superlattices (SLs) could enable the realization of novel structures with previously unexplored functionalities. Here we report the atomic layer-by-layer epitaxial growth of vdW SLs with programmable stacking periodicities, composed of more than two kinds of dissimilar TMDC MLs, such as MoS
2
, WS
2
and WSe
2
. Using kinetics-controlled vdW epitaxy in the near-equilibrium limit by metal–organic chemical vapour depositions, we achieved precise ML-by-ML stacking, free of interlayer atomic mixing, which resulted in tunable two-dimensional vdW electronic systems. As an example, by exploiting the series of type II band alignments at coherent two-dimensional vdW heterointerfaces, we demonstrated valley-polarized carrier excitations—one of the most distinctive electronic features in vdW ML semiconductors—which scale with the stack numbers
n
in our (MoS
2
/WS
2
)
n
SLs on optical excitations.
Kinetics-controlled van der Waals epitaxy in the near-equilibrium limit by metal–organic chemical vapour deposition enables precise layer-by-layer stacking of dissimilar transition metal dichalcogenides.</description><identifier>ISSN: 1748-3387</identifier><identifier>EISSN: 1748-3395</identifier><identifier>DOI: 10.1038/s41565-021-00942-z</identifier><identifier>PMID: 34267369</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>140/125 ; 140/133 ; 639/301/357/1018 ; 639/925/357/1018 ; Chalcogenides ; Chemistry and Materials Science ; Crystals ; Dissimilar metals ; Electronic systems ; Epitaxial growth ; Epitaxy ; Excitation ; Interlayers ; Kinetics ; Materials Science ; Metalorganic chemical vapor deposition ; Metals ; Molybdenum disulfide ; Nanotechnology ; Nanotechnology and Microengineering ; Organic chemicals ; Organic chemistry ; Semiconductors ; Stacking ; Superlattices ; Transition metal compounds ; Tungsten disulfide</subject><ispartof>Nature nanotechnology, 2021-10, Vol.16 (10), p.1092-1098</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021</rights><rights>2021. The Author(s), under exclusive licence to Springer Nature Limited.</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-p180t-32a836171459ad0588d525210ff01af96315af02c439d80eb1fe94ad4f2284763</cites><orcidid>0000-0001-8634-2623 ; 0000-0003-1648-142X ; 0000-0003-3295-1049 ; 0000-0002-3160-358X ; 0000-0002-8936-9407</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41565-021-00942-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41565-021-00942-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34267369$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jin, Gangtae</creatorcontrib><creatorcontrib>Lee, Chang-Soo</creatorcontrib><creatorcontrib>Okello, Odongo F. N.</creatorcontrib><creatorcontrib>Lee, Suk-Ho</creatorcontrib><creatorcontrib>Park, Min Yeong</creatorcontrib><creatorcontrib>Cha, Soonyoung</creatorcontrib><creatorcontrib>Seo, Seung-Young</creatorcontrib><creatorcontrib>Moon, Gunho</creatorcontrib><creatorcontrib>Min, Seok Young</creatorcontrib><creatorcontrib>Yang, Dong-Hwan</creatorcontrib><creatorcontrib>Han, Cheolhee</creatorcontrib><creatorcontrib>Ahn, Hyungju</creatorcontrib><creatorcontrib>Lee, Jekwan</creatorcontrib><creatorcontrib>Choi, Hyunyong</creatorcontrib><creatorcontrib>Kim, Jonghwan</creatorcontrib><creatorcontrib>Choi, Si-Young</creatorcontrib><creatorcontrib>Jo, Moon-Ho</creatorcontrib><title>Heteroepitaxial van der Waals semiconductor superlattices</title><title>Nature nanotechnology</title><addtitle>Nat. Nanotechnol</addtitle><addtitle>Nat Nanotechnol</addtitle><description>A broad range of transition metal dichalcogenide (TMDC) semiconductors are available as monolayer (ML) crystals, so the precise integration of each kind into van der Waals (vdW) superlattices (SLs) could enable the realization of novel structures with previously unexplored functionalities. Here we report the atomic layer-by-layer epitaxial growth of vdW SLs with programmable stacking periodicities, composed of more than two kinds of dissimilar TMDC MLs, such as MoS
2
, WS
2
and WSe
2
. Using kinetics-controlled vdW epitaxy in the near-equilibrium limit by metal–organic chemical vapour depositions, we achieved precise ML-by-ML stacking, free of interlayer atomic mixing, which resulted in tunable two-dimensional vdW electronic systems. As an example, by exploiting the series of type II band alignments at coherent two-dimensional vdW heterointerfaces, we demonstrated valley-polarized carrier excitations—one of the most distinctive electronic features in vdW ML semiconductors—which scale with the stack numbers
n
in our (MoS
2
/WS
2
)
n
SLs on optical excitations.
Kinetics-controlled van der Waals epitaxy in the near-equilibrium limit by metal–organic chemical vapour deposition enables precise layer-by-layer stacking of dissimilar transition metal dichalcogenides.</description><subject>140/125</subject><subject>140/133</subject><subject>639/301/357/1018</subject><subject>639/925/357/1018</subject><subject>Chalcogenides</subject><subject>Chemistry and Materials Science</subject><subject>Crystals</subject><subject>Dissimilar metals</subject><subject>Electronic systems</subject><subject>Epitaxial growth</subject><subject>Epitaxy</subject><subject>Excitation</subject><subject>Interlayers</subject><subject>Kinetics</subject><subject>Materials Science</subject><subject>Metalorganic chemical vapor deposition</subject><subject>Metals</subject><subject>Molybdenum disulfide</subject><subject>Nanotechnology</subject><subject>Nanotechnology and Microengineering</subject><subject>Organic chemicals</subject><subject>Organic chemistry</subject><subject>Semiconductors</subject><subject>Stacking</subject><subject>Superlattices</subject><subject>Transition metal compounds</subject><subject>Tungsten disulfide</subject><issn>1748-3387</issn><issn>1748-3395</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpFkE1LAzEQhoMotlb_gAdZ8BydycducpRirVDwongM6W4iW9rdNcmK9te7tVVP88I8vMM8hFwi3CBwdRsFylxSYEgBtGB0e0TGWAhFOdfy-C-rYkTOYlwBSKaZOCUjLlhe8FyPiZ675ELrujrZz9qusw_bZJUL2au165hFt6nLtqn6MrUhi33nwtqmVJcunpMTPyDu4jAn5GV2_zyd08XTw-P0bkE7VJAoZ1bxHAsUUtsKpFKVZJIheA9ovc45SuuBlYLrSoFbonda2Ep4xpQocj4h1_veLrTvvYvJrNo-NMNJw6RC0EPFjro6UP1y4yrThXpjw5f5_XQA-B6Iw6p5c-G_BsHsfJq9TzP4ND8-zZZ_A24iZPs</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Jin, Gangtae</creator><creator>Lee, Chang-Soo</creator><creator>Okello, Odongo F. N.</creator><creator>Lee, Suk-Ho</creator><creator>Park, Min Yeong</creator><creator>Cha, Soonyoung</creator><creator>Seo, Seung-Young</creator><creator>Moon, Gunho</creator><creator>Min, Seok Young</creator><creator>Yang, Dong-Hwan</creator><creator>Han, Cheolhee</creator><creator>Ahn, Hyungju</creator><creator>Lee, Jekwan</creator><creator>Choi, Hyunyong</creator><creator>Kim, Jonghwan</creator><creator>Choi, Si-Young</creator><creator>Jo, Moon-Ho</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>3V.</scope><scope>7QO</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-8634-2623</orcidid><orcidid>https://orcid.org/0000-0003-1648-142X</orcidid><orcidid>https://orcid.org/0000-0003-3295-1049</orcidid><orcidid>https://orcid.org/0000-0002-3160-358X</orcidid><orcidid>https://orcid.org/0000-0002-8936-9407</orcidid></search><sort><creationdate>20211001</creationdate><title>Heteroepitaxial van der Waals semiconductor superlattices</title><author>Jin, Gangtae ; Lee, Chang-Soo ; Okello, Odongo F. N. ; Lee, Suk-Ho ; Park, Min Yeong ; Cha, Soonyoung ; Seo, Seung-Young ; Moon, Gunho ; Min, Seok Young ; Yang, Dong-Hwan ; Han, Cheolhee ; Ahn, Hyungju ; Lee, Jekwan ; Choi, Hyunyong ; Kim, Jonghwan ; Choi, Si-Young ; Jo, Moon-Ho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p180t-32a836171459ad0588d525210ff01af96315af02c439d80eb1fe94ad4f2284763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>140/125</topic><topic>140/133</topic><topic>639/301/357/1018</topic><topic>639/925/357/1018</topic><topic>Chalcogenides</topic><topic>Chemistry and Materials Science</topic><topic>Crystals</topic><topic>Dissimilar metals</topic><topic>Electronic systems</topic><topic>Epitaxial growth</topic><topic>Epitaxy</topic><topic>Excitation</topic><topic>Interlayers</topic><topic>Kinetics</topic><topic>Materials Science</topic><topic>Metalorganic chemical vapor deposition</topic><topic>Metals</topic><topic>Molybdenum disulfide</topic><topic>Nanotechnology</topic><topic>Nanotechnology and Microengineering</topic><topic>Organic chemicals</topic><topic>Organic chemistry</topic><topic>Semiconductors</topic><topic>Stacking</topic><topic>Superlattices</topic><topic>Transition metal compounds</topic><topic>Tungsten disulfide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jin, Gangtae</creatorcontrib><creatorcontrib>Lee, Chang-Soo</creatorcontrib><creatorcontrib>Okello, Odongo F. N.</creatorcontrib><creatorcontrib>Lee, Suk-Ho</creatorcontrib><creatorcontrib>Park, Min Yeong</creatorcontrib><creatorcontrib>Cha, Soonyoung</creatorcontrib><creatorcontrib>Seo, Seung-Young</creatorcontrib><creatorcontrib>Moon, Gunho</creatorcontrib><creatorcontrib>Min, Seok Young</creatorcontrib><creatorcontrib>Yang, Dong-Hwan</creatorcontrib><creatorcontrib>Han, Cheolhee</creatorcontrib><creatorcontrib>Ahn, Hyungju</creatorcontrib><creatorcontrib>Lee, Jekwan</creatorcontrib><creatorcontrib>Choi, Hyunyong</creatorcontrib><creatorcontrib>Kim, Jonghwan</creatorcontrib><creatorcontrib>Choi, Si-Young</creatorcontrib><creatorcontrib>Jo, Moon-Ho</creatorcontrib><collection>PubMed</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Nature nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jin, Gangtae</au><au>Lee, Chang-Soo</au><au>Okello, Odongo F. N.</au><au>Lee, Suk-Ho</au><au>Park, Min Yeong</au><au>Cha, Soonyoung</au><au>Seo, Seung-Young</au><au>Moon, Gunho</au><au>Min, Seok Young</au><au>Yang, Dong-Hwan</au><au>Han, Cheolhee</au><au>Ahn, Hyungju</au><au>Lee, Jekwan</au><au>Choi, Hyunyong</au><au>Kim, Jonghwan</au><au>Choi, Si-Young</au><au>Jo, Moon-Ho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heteroepitaxial van der Waals semiconductor superlattices</atitle><jtitle>Nature nanotechnology</jtitle><stitle>Nat. Nanotechnol</stitle><addtitle>Nat Nanotechnol</addtitle><date>2021-10-01</date><risdate>2021</risdate><volume>16</volume><issue>10</issue><spage>1092</spage><epage>1098</epage><pages>1092-1098</pages><issn>1748-3387</issn><eissn>1748-3395</eissn><abstract>A broad range of transition metal dichalcogenide (TMDC) semiconductors are available as monolayer (ML) crystals, so the precise integration of each kind into van der Waals (vdW) superlattices (SLs) could enable the realization of novel structures with previously unexplored functionalities. Here we report the atomic layer-by-layer epitaxial growth of vdW SLs with programmable stacking periodicities, composed of more than two kinds of dissimilar TMDC MLs, such as MoS
2
, WS
2
and WSe
2
. Using kinetics-controlled vdW epitaxy in the near-equilibrium limit by metal–organic chemical vapour depositions, we achieved precise ML-by-ML stacking, free of interlayer atomic mixing, which resulted in tunable two-dimensional vdW electronic systems. As an example, by exploiting the series of type II band alignments at coherent two-dimensional vdW heterointerfaces, we demonstrated valley-polarized carrier excitations—one of the most distinctive electronic features in vdW ML semiconductors—which scale with the stack numbers
n
in our (MoS
2
/WS
2
)
n
SLs on optical excitations.
Kinetics-controlled van der Waals epitaxy in the near-equilibrium limit by metal–organic chemical vapour deposition enables precise layer-by-layer stacking of dissimilar transition metal dichalcogenides.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>34267369</pmid><doi>10.1038/s41565-021-00942-z</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-8634-2623</orcidid><orcidid>https://orcid.org/0000-0003-1648-142X</orcidid><orcidid>https://orcid.org/0000-0003-3295-1049</orcidid><orcidid>https://orcid.org/0000-0002-3160-358X</orcidid><orcidid>https://orcid.org/0000-0002-8936-9407</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1748-3387 |
ispartof | Nature nanotechnology, 2021-10, Vol.16 (10), p.1092-1098 |
issn | 1748-3387 1748-3395 |
language | eng |
recordid | cdi_proquest_journals_2581099636 |
source | Nature; SpringerLink Journals - AutoHoldings |
subjects | 140/125 140/133 639/301/357/1018 639/925/357/1018 Chalcogenides Chemistry and Materials Science Crystals Dissimilar metals Electronic systems Epitaxial growth Epitaxy Excitation Interlayers Kinetics Materials Science Metalorganic chemical vapor deposition Metals Molybdenum disulfide Nanotechnology Nanotechnology and Microengineering Organic chemicals Organic chemistry Semiconductors Stacking Superlattices Transition metal compounds Tungsten disulfide |
title | Heteroepitaxial van der Waals semiconductor superlattices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T08%3A07%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heteroepitaxial%20van%20der%20Waals%20semiconductor%20superlattices&rft.jtitle=Nature%20nanotechnology&rft.au=Jin,%20Gangtae&rft.date=2021-10-01&rft.volume=16&rft.issue=10&rft.spage=1092&rft.epage=1098&rft.pages=1092-1098&rft.issn=1748-3387&rft.eissn=1748-3395&rft_id=info:doi/10.1038/s41565-021-00942-z&rft_dat=%3Cproquest_pubme%3E2581099636%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2581099636&rft_id=info:pmid/34267369&rfr_iscdi=true |