Measurement and assessment of corona current density for HVDC bundle conductors by FDM integrated with full multigrid technique

•FDM-FMG is proposed for assessing HVDC bundled conductors.•FMG decreases the truncation error for finite difference approximations.•FMG is time-efficient as it converges fast on finer computational domains.•Numerical outcomes concurred well with past and present laboratory results. This paper prese...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electric power systems research 2021-10, Vol.199, p.107370, Article 107370
Hauptverfasser: Abouelatta, Mohamed A., Ward, Sayed A., Sayed, Ahmad M., Mahmoud, Karar, Lehtonen, Matti, Darwish, Mohamed M.F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 107370
container_title Electric power systems research
container_volume 199
creator Abouelatta, Mohamed A.
Ward, Sayed A.
Sayed, Ahmad M.
Mahmoud, Karar
Lehtonen, Matti
Darwish, Mohamed M.F.
description •FDM-FMG is proposed for assessing HVDC bundled conductors.•FMG decreases the truncation error for finite difference approximations.•FMG is time-efficient as it converges fast on finer computational domains.•Numerical outcomes concurred well with past and present laboratory results. This paper presents an intensive measurement and analysis of monopolar ionized fields in bundled high voltage direct current (HVDC) conductors using the finite difference method based on the full multigrid technique. The positive feature of this study is that it considers the comprehensive representation of the bundle conductor, unlike the existing studies that approximate the bundle conductor with an equivalent conductor radius. Firstly, the proposed method is compared with previous experimental results. Secondly, a flexible laboratory model for the bundled HVDC conductors is constructed. Thirdly, the laboratory model is exploited to validate the numerically computed current density distribution on the ground plane and corona current for different bundles’ numbers and different distances between bundles. Bundles of one, two, and four conductors are adopted in the experimental setup. For the same applied voltage, the results verified that the corona current decreases by increasing the bundles’ number and/or minimizing the spacing between bundles. Consequently, the obtained results confirmed that corona power losses can be minimized, without needing the traditional procedures that involve increasing either the conductor radius or its height above the ground. The results of the proposed numerical approach concurred well with the present and past laboratory results.
doi_str_mv 10.1016/j.epsr.2021.107370
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2581070542</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378779621003515</els_id><sourcerecordid>2581070542</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-6f6cef75dc7db019309e5f13bbfde39ba222068ff19220488e9fc03778e46eb33</originalsourceid><addsrcrecordid>eNp9kMtOGzEUhi3USqSUF2BlifUEXzLjGYlNlRSoBOqmsLVm7GPiaGKnx56irHh1PE3XXZ2L_v9cPkKuOFtyxpub3RIOCZeCCV4aSip2Rha8VbISbNV8IgsmVVsp1TXn5EtKO8ZY06l6Qd6foE8Twh5Cpn2wtE8JUvpbRkdNxBh6aibEuWMhJJ-P1EWkDy-bNR2mYEcosmAnkyMmOhzp3eaJ-pDhFfsMlr75vKVuGke6n8bsX9FbmsFsg_89wVfy2fVjgst_8YI8333_tX6oHn_e_1h_e6yMVCJXjWsMOFVbo-zAeCdZB7XjchicBdkNvRCCNa1zvCvJqm2hc6b8rFpYNTBIeUGuT3MPGMvalPUuThjKSi3qtiBj9UoUlTipDMaUEJw-oN_3eNSc6Rm03ukZtJ5B6xPoYro9maDc_8cD6mQ8BAPWI5isbfT_s38AvzGJBA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2581070542</pqid></control><display><type>article</type><title>Measurement and assessment of corona current density for HVDC bundle conductors by FDM integrated with full multigrid technique</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Abouelatta, Mohamed A. ; Ward, Sayed A. ; Sayed, Ahmad M. ; Mahmoud, Karar ; Lehtonen, Matti ; Darwish, Mohamed M.F.</creator><creatorcontrib>Abouelatta, Mohamed A. ; Ward, Sayed A. ; Sayed, Ahmad M. ; Mahmoud, Karar ; Lehtonen, Matti ; Darwish, Mohamed M.F.</creatorcontrib><description>•FDM-FMG is proposed for assessing HVDC bundled conductors.•FMG decreases the truncation error for finite difference approximations.•FMG is time-efficient as it converges fast on finer computational domains.•Numerical outcomes concurred well with past and present laboratory results. This paper presents an intensive measurement and analysis of monopolar ionized fields in bundled high voltage direct current (HVDC) conductors using the finite difference method based on the full multigrid technique. The positive feature of this study is that it considers the comprehensive representation of the bundle conductor, unlike the existing studies that approximate the bundle conductor with an equivalent conductor radius. Firstly, the proposed method is compared with previous experimental results. Secondly, a flexible laboratory model for the bundled HVDC conductors is constructed. Thirdly, the laboratory model is exploited to validate the numerically computed current density distribution on the ground plane and corona current for different bundles’ numbers and different distances between bundles. Bundles of one, two, and four conductors are adopted in the experimental setup. For the same applied voltage, the results verified that the corona current decreases by increasing the bundles’ number and/or minimizing the spacing between bundles. Consequently, the obtained results confirmed that corona power losses can be minimized, without needing the traditional procedures that involve increasing either the conductor radius or its height above the ground. The results of the proposed numerical approach concurred well with the present and past laboratory results.</description><identifier>ISSN: 0378-7796</identifier><identifier>EISSN: 1873-2046</identifier><identifier>DOI: 10.1016/j.epsr.2021.107370</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Bundle conductors ; Conductivity ; Conductors ; Corona losses ; Current density ; Density distribution ; Direct current ; Finite difference method ; Full multigrid method ; Ground plane ; HVDC Bundle transmission ; Mathematical models ; Measurement ; Studies</subject><ispartof>Electric power systems research, 2021-10, Vol.199, p.107370, Article 107370</ispartof><rights>2021</rights><rights>Copyright Elsevier Science Ltd. Oct 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-6f6cef75dc7db019309e5f13bbfde39ba222068ff19220488e9fc03778e46eb33</citedby><cites>FETCH-LOGICAL-c372t-6f6cef75dc7db019309e5f13bbfde39ba222068ff19220488e9fc03778e46eb33</cites><orcidid>0000-0002-9979-7333 ; 0000-0001-9782-8813</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.epsr.2021.107370$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Abouelatta, Mohamed A.</creatorcontrib><creatorcontrib>Ward, Sayed A.</creatorcontrib><creatorcontrib>Sayed, Ahmad M.</creatorcontrib><creatorcontrib>Mahmoud, Karar</creatorcontrib><creatorcontrib>Lehtonen, Matti</creatorcontrib><creatorcontrib>Darwish, Mohamed M.F.</creatorcontrib><title>Measurement and assessment of corona current density for HVDC bundle conductors by FDM integrated with full multigrid technique</title><title>Electric power systems research</title><description>•FDM-FMG is proposed for assessing HVDC bundled conductors.•FMG decreases the truncation error for finite difference approximations.•FMG is time-efficient as it converges fast on finer computational domains.•Numerical outcomes concurred well with past and present laboratory results. This paper presents an intensive measurement and analysis of monopolar ionized fields in bundled high voltage direct current (HVDC) conductors using the finite difference method based on the full multigrid technique. The positive feature of this study is that it considers the comprehensive representation of the bundle conductor, unlike the existing studies that approximate the bundle conductor with an equivalent conductor radius. Firstly, the proposed method is compared with previous experimental results. Secondly, a flexible laboratory model for the bundled HVDC conductors is constructed. Thirdly, the laboratory model is exploited to validate the numerically computed current density distribution on the ground plane and corona current for different bundles’ numbers and different distances between bundles. Bundles of one, two, and four conductors are adopted in the experimental setup. For the same applied voltage, the results verified that the corona current decreases by increasing the bundles’ number and/or minimizing the spacing between bundles. Consequently, the obtained results confirmed that corona power losses can be minimized, without needing the traditional procedures that involve increasing either the conductor radius or its height above the ground. The results of the proposed numerical approach concurred well with the present and past laboratory results.</description><subject>Bundle conductors</subject><subject>Conductivity</subject><subject>Conductors</subject><subject>Corona losses</subject><subject>Current density</subject><subject>Density distribution</subject><subject>Direct current</subject><subject>Finite difference method</subject><subject>Full multigrid method</subject><subject>Ground plane</subject><subject>HVDC Bundle transmission</subject><subject>Mathematical models</subject><subject>Measurement</subject><subject>Studies</subject><issn>0378-7796</issn><issn>1873-2046</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOGzEUhi3USqSUF2BlifUEXzLjGYlNlRSoBOqmsLVm7GPiaGKnx56irHh1PE3XXZ2L_v9cPkKuOFtyxpub3RIOCZeCCV4aSip2Rha8VbISbNV8IgsmVVsp1TXn5EtKO8ZY06l6Qd6foE8Twh5Cpn2wtE8JUvpbRkdNxBh6aibEuWMhJJ-P1EWkDy-bNR2mYEcosmAnkyMmOhzp3eaJ-pDhFfsMlr75vKVuGke6n8bsX9FbmsFsg_89wVfy2fVjgst_8YI8333_tX6oHn_e_1h_e6yMVCJXjWsMOFVbo-zAeCdZB7XjchicBdkNvRCCNa1zvCvJqm2hc6b8rFpYNTBIeUGuT3MPGMvalPUuThjKSi3qtiBj9UoUlTipDMaUEJw-oN_3eNSc6Rm03ukZtJ5B6xPoYro9maDc_8cD6mQ8BAPWI5isbfT_s38AvzGJBA</recordid><startdate>202110</startdate><enddate>202110</enddate><creator>Abouelatta, Mohamed A.</creator><creator>Ward, Sayed A.</creator><creator>Sayed, Ahmad M.</creator><creator>Mahmoud, Karar</creator><creator>Lehtonen, Matti</creator><creator>Darwish, Mohamed M.F.</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9979-7333</orcidid><orcidid>https://orcid.org/0000-0001-9782-8813</orcidid></search><sort><creationdate>202110</creationdate><title>Measurement and assessment of corona current density for HVDC bundle conductors by FDM integrated with full multigrid technique</title><author>Abouelatta, Mohamed A. ; Ward, Sayed A. ; Sayed, Ahmad M. ; Mahmoud, Karar ; Lehtonen, Matti ; Darwish, Mohamed M.F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-6f6cef75dc7db019309e5f13bbfde39ba222068ff19220488e9fc03778e46eb33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bundle conductors</topic><topic>Conductivity</topic><topic>Conductors</topic><topic>Corona losses</topic><topic>Current density</topic><topic>Density distribution</topic><topic>Direct current</topic><topic>Finite difference method</topic><topic>Full multigrid method</topic><topic>Ground plane</topic><topic>HVDC Bundle transmission</topic><topic>Mathematical models</topic><topic>Measurement</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abouelatta, Mohamed A.</creatorcontrib><creatorcontrib>Ward, Sayed A.</creatorcontrib><creatorcontrib>Sayed, Ahmad M.</creatorcontrib><creatorcontrib>Mahmoud, Karar</creatorcontrib><creatorcontrib>Lehtonen, Matti</creatorcontrib><creatorcontrib>Darwish, Mohamed M.F.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Electric power systems research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abouelatta, Mohamed A.</au><au>Ward, Sayed A.</au><au>Sayed, Ahmad M.</au><au>Mahmoud, Karar</au><au>Lehtonen, Matti</au><au>Darwish, Mohamed M.F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Measurement and assessment of corona current density for HVDC bundle conductors by FDM integrated with full multigrid technique</atitle><jtitle>Electric power systems research</jtitle><date>2021-10</date><risdate>2021</risdate><volume>199</volume><spage>107370</spage><pages>107370-</pages><artnum>107370</artnum><issn>0378-7796</issn><eissn>1873-2046</eissn><abstract>•FDM-FMG is proposed for assessing HVDC bundled conductors.•FMG decreases the truncation error for finite difference approximations.•FMG is time-efficient as it converges fast on finer computational domains.•Numerical outcomes concurred well with past and present laboratory results. This paper presents an intensive measurement and analysis of monopolar ionized fields in bundled high voltage direct current (HVDC) conductors using the finite difference method based on the full multigrid technique. The positive feature of this study is that it considers the comprehensive representation of the bundle conductor, unlike the existing studies that approximate the bundle conductor with an equivalent conductor radius. Firstly, the proposed method is compared with previous experimental results. Secondly, a flexible laboratory model for the bundled HVDC conductors is constructed. Thirdly, the laboratory model is exploited to validate the numerically computed current density distribution on the ground plane and corona current for different bundles’ numbers and different distances between bundles. Bundles of one, two, and four conductors are adopted in the experimental setup. For the same applied voltage, the results verified that the corona current decreases by increasing the bundles’ number and/or minimizing the spacing between bundles. Consequently, the obtained results confirmed that corona power losses can be minimized, without needing the traditional procedures that involve increasing either the conductor radius or its height above the ground. The results of the proposed numerical approach concurred well with the present and past laboratory results.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.epsr.2021.107370</doi><orcidid>https://orcid.org/0000-0002-9979-7333</orcidid><orcidid>https://orcid.org/0000-0001-9782-8813</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0378-7796
ispartof Electric power systems research, 2021-10, Vol.199, p.107370, Article 107370
issn 0378-7796
1873-2046
language eng
recordid cdi_proquest_journals_2581070542
source Elsevier ScienceDirect Journals Complete
subjects Bundle conductors
Conductivity
Conductors
Corona losses
Current density
Density distribution
Direct current
Finite difference method
Full multigrid method
Ground plane
HVDC Bundle transmission
Mathematical models
Measurement
Studies
title Measurement and assessment of corona current density for HVDC bundle conductors by FDM integrated with full multigrid technique
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T02%3A00%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Measurement%20and%20assessment%20of%20corona%20current%20density%20for%20HVDC%20bundle%20conductors%20by%20FDM%20integrated%20with%20full%20multigrid%20technique&rft.jtitle=Electric%20power%20systems%20research&rft.au=Abouelatta,%20Mohamed%20A.&rft.date=2021-10&rft.volume=199&rft.spage=107370&rft.pages=107370-&rft.artnum=107370&rft.issn=0378-7796&rft.eissn=1873-2046&rft_id=info:doi/10.1016/j.epsr.2021.107370&rft_dat=%3Cproquest_cross%3E2581070542%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2581070542&rft_id=info:pmid/&rft_els_id=S0378779621003515&rfr_iscdi=true