Structural, dielectric, electrical and modulus spectroscopic characteristics of CoFeCuO4 spinel ferrite nanoparticles

[Display omitted] •CoFeCuO4 prepared by sol–gel method adopts a cubic symmetry with Fd3-m space group.•The temperature and frequency dependence of dielectric constants was investigated.•Dielectric analysis reveals a single thermally activated conduction mechanism.•Substitution of Fe by Cu increases...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science & engineering. B, Solid-state materials for advanced technology Solid-state materials for advanced technology, 2021-10, Vol.272, p.115331, Article 115331
Hauptverfasser: Nasri, M., Henchiri, C., Dhahri, R., Khelifi, J., Rahmouni, H., Dhahri, E., Omari, L.H., Tozri, A., Berber, Mohamed R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 115331
container_title Materials science & engineering. B, Solid-state materials for advanced technology
container_volume 272
creator Nasri, M.
Henchiri, C.
Dhahri, R.
Khelifi, J.
Rahmouni, H.
Dhahri, E.
Omari, L.H.
Tozri, A.
Berber, Mohamed R.
description [Display omitted] •CoFeCuO4 prepared by sol–gel method adopts a cubic symmetry with Fd3-m space group.•The temperature and frequency dependence of dielectric constants was investigated.•Dielectric analysis reveals a single thermally activated conduction mechanism.•Substitution of Fe by Cu increases ac conductivity and decreases the dielectric loss.•The mechanism responsible of electrical conductivity is related to the relaxation one. In this work, our focus is upon the synthesis of material having useful and less expensive high frequency applications. For this purpose, we used the sol–gel method to elaborate the Cu-substituted CoFe2O4. The XRD analysis confirmed the single-phase cubic spinel structure with the Fd3-m space group. The grain size distribution was traced through different methods. It confirms the nano-metric size of the compound. To elaborate the electrical and dielectric properties of the prepared sample, impedance spectroscopy was invested. It demonstrated the relaxing nature of our material and indicated that the substitution of Fe by Cu on CoFe2O4 increases the ac conductivity and decreases the dielectric loss especially at higher frequencies; the low loss values indicate the potential of these ferrites for high frequency applications at temperatures close to the room temperature. The activation energy value was estimated based on the relaxation time and the conductance curves analysis, the found value is around 0.33 eV which confirms the semiconductor character of our compound and its capacity to achieve a significant gain in productivity. Moreover, this obtained value indicates the relationship between the electrical conductivity mechanism and the relaxation one.
doi_str_mv 10.1016/j.mseb.2021.115331
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2581069391</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921510721002919</els_id><sourcerecordid>2581069391</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-af5ba715b6aea9c89e9a45078fd3d58ed60f0559f34e7706f47cc92f062c93233</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMoOI6-gKuAWzvm0rQNuJHiqDAwC3UdMukJpnSamqSCb29Ldesqh_D95_IhdE3JhhJa3LWbY4TDhhFGN5QKzukJWtGq5Fku8_wUrYhkNBOUlOfoIsaWEEIZYys0vqYwmjQG3d3ixkEHJgVnbvFfpTus-wYffTN2Y8RxmL99NH5wBpsPHbRJEFxMzkTsLa79Fupxn0-k66HDFkJwCXCvez_oMGEdxEt0ZnUX4er3XaP37eNb_Zzt9k8v9cMuM5xVKdNWHHRJxaHQoKWpJEidC1JWtuGNqKApiCVCSMtzKEtS2Lw0RjJLCmYkZ5yv0c3Sdwj-c4SYVOvH0E8jFRMVJYXkkk4UWygzHRYDWDUEd9ThW1GiZr2qVbNeNetVi94pdL-EYNr_y0FQ0TjoDTQuTIpU491_8R8IaIVr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2581069391</pqid></control><display><type>article</type><title>Structural, dielectric, electrical and modulus spectroscopic characteristics of CoFeCuO4 spinel ferrite nanoparticles</title><source>Elsevier ScienceDirect Journals</source><creator>Nasri, M. ; Henchiri, C. ; Dhahri, R. ; Khelifi, J. ; Rahmouni, H. ; Dhahri, E. ; Omari, L.H. ; Tozri, A. ; Berber, Mohamed R.</creator><creatorcontrib>Nasri, M. ; Henchiri, C. ; Dhahri, R. ; Khelifi, J. ; Rahmouni, H. ; Dhahri, E. ; Omari, L.H. ; Tozri, A. ; Berber, Mohamed R.</creatorcontrib><description>[Display omitted] •CoFeCuO4 prepared by sol–gel method adopts a cubic symmetry with Fd3-m space group.•The temperature and frequency dependence of dielectric constants was investigated.•Dielectric analysis reveals a single thermally activated conduction mechanism.•Substitution of Fe by Cu increases ac conductivity and decreases the dielectric loss.•The mechanism responsible of electrical conductivity is related to the relaxation one. In this work, our focus is upon the synthesis of material having useful and less expensive high frequency applications. For this purpose, we used the sol–gel method to elaborate the Cu-substituted CoFe2O4. The XRD analysis confirmed the single-phase cubic spinel structure with the Fd3-m space group. The grain size distribution was traced through different methods. It confirms the nano-metric size of the compound. To elaborate the electrical and dielectric properties of the prepared sample, impedance spectroscopy was invested. It demonstrated the relaxing nature of our material and indicated that the substitution of Fe by Cu on CoFe2O4 increases the ac conductivity and decreases the dielectric loss especially at higher frequencies; the low loss values indicate the potential of these ferrites for high frequency applications at temperatures close to the room temperature. The activation energy value was estimated based on the relaxation time and the conductance curves analysis, the found value is around 0.33 eV which confirms the semiconductor character of our compound and its capacity to achieve a significant gain in productivity. Moreover, this obtained value indicates the relationship between the electrical conductivity mechanism and the relaxation one.</description><identifier>ISSN: 0921-5107</identifier><identifier>EISSN: 1873-4944</identifier><identifier>DOI: 10.1016/j.mseb.2021.115331</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>ac Electrical conductivity ; Activation energy ; Cobalt ferrites ; Copper ; Dielectric loss ; Dielectric properties ; Electrical resistivity ; Energy value ; Grain size distribution ; High frequencies ; Impedance spectroscopy ; Nanoparticles ; Phenomenon of relaxation ; Relaxation time ; Room temperature ; Sol-gel processes ; Spinel ; Spinel ferrite</subject><ispartof>Materials science &amp; engineering. B, Solid-state materials for advanced technology, 2021-10, Vol.272, p.115331, Article 115331</ispartof><rights>2021 Elsevier B.V.</rights><rights>Copyright Elsevier BV Oct 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-af5ba715b6aea9c89e9a45078fd3d58ed60f0559f34e7706f47cc92f062c93233</citedby><cites>FETCH-LOGICAL-c328t-af5ba715b6aea9c89e9a45078fd3d58ed60f0559f34e7706f47cc92f062c93233</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.mseb.2021.115331$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Nasri, M.</creatorcontrib><creatorcontrib>Henchiri, C.</creatorcontrib><creatorcontrib>Dhahri, R.</creatorcontrib><creatorcontrib>Khelifi, J.</creatorcontrib><creatorcontrib>Rahmouni, H.</creatorcontrib><creatorcontrib>Dhahri, E.</creatorcontrib><creatorcontrib>Omari, L.H.</creatorcontrib><creatorcontrib>Tozri, A.</creatorcontrib><creatorcontrib>Berber, Mohamed R.</creatorcontrib><title>Structural, dielectric, electrical and modulus spectroscopic characteristics of CoFeCuO4 spinel ferrite nanoparticles</title><title>Materials science &amp; engineering. B, Solid-state materials for advanced technology</title><description>[Display omitted] •CoFeCuO4 prepared by sol–gel method adopts a cubic symmetry with Fd3-m space group.•The temperature and frequency dependence of dielectric constants was investigated.•Dielectric analysis reveals a single thermally activated conduction mechanism.•Substitution of Fe by Cu increases ac conductivity and decreases the dielectric loss.•The mechanism responsible of electrical conductivity is related to the relaxation one. In this work, our focus is upon the synthesis of material having useful and less expensive high frequency applications. For this purpose, we used the sol–gel method to elaborate the Cu-substituted CoFe2O4. The XRD analysis confirmed the single-phase cubic spinel structure with the Fd3-m space group. The grain size distribution was traced through different methods. It confirms the nano-metric size of the compound. To elaborate the electrical and dielectric properties of the prepared sample, impedance spectroscopy was invested. It demonstrated the relaxing nature of our material and indicated that the substitution of Fe by Cu on CoFe2O4 increases the ac conductivity and decreases the dielectric loss especially at higher frequencies; the low loss values indicate the potential of these ferrites for high frequency applications at temperatures close to the room temperature. The activation energy value was estimated based on the relaxation time and the conductance curves analysis, the found value is around 0.33 eV which confirms the semiconductor character of our compound and its capacity to achieve a significant gain in productivity. Moreover, this obtained value indicates the relationship between the electrical conductivity mechanism and the relaxation one.</description><subject>ac Electrical conductivity</subject><subject>Activation energy</subject><subject>Cobalt ferrites</subject><subject>Copper</subject><subject>Dielectric loss</subject><subject>Dielectric properties</subject><subject>Electrical resistivity</subject><subject>Energy value</subject><subject>Grain size distribution</subject><subject>High frequencies</subject><subject>Impedance spectroscopy</subject><subject>Nanoparticles</subject><subject>Phenomenon of relaxation</subject><subject>Relaxation time</subject><subject>Room temperature</subject><subject>Sol-gel processes</subject><subject>Spinel</subject><subject>Spinel ferrite</subject><issn>0921-5107</issn><issn>1873-4944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKxDAUhoMoOI6-gKuAWzvm0rQNuJHiqDAwC3UdMukJpnSamqSCb29Ldesqh_D95_IhdE3JhhJa3LWbY4TDhhFGN5QKzukJWtGq5Fku8_wUrYhkNBOUlOfoIsaWEEIZYys0vqYwmjQG3d3ixkEHJgVnbvFfpTus-wYffTN2Y8RxmL99NH5wBpsPHbRJEFxMzkTsLa79Fupxn0-k66HDFkJwCXCvez_oMGEdxEt0ZnUX4er3XaP37eNb_Zzt9k8v9cMuM5xVKdNWHHRJxaHQoKWpJEidC1JWtuGNqKApiCVCSMtzKEtS2Lw0RjJLCmYkZ5yv0c3Sdwj-c4SYVOvH0E8jFRMVJYXkkk4UWygzHRYDWDUEd9ThW1GiZr2qVbNeNetVi94pdL-EYNr_y0FQ0TjoDTQuTIpU491_8R8IaIVr</recordid><startdate>202110</startdate><enddate>202110</enddate><creator>Nasri, M.</creator><creator>Henchiri, C.</creator><creator>Dhahri, R.</creator><creator>Khelifi, J.</creator><creator>Rahmouni, H.</creator><creator>Dhahri, E.</creator><creator>Omari, L.H.</creator><creator>Tozri, A.</creator><creator>Berber, Mohamed R.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>202110</creationdate><title>Structural, dielectric, electrical and modulus spectroscopic characteristics of CoFeCuO4 spinel ferrite nanoparticles</title><author>Nasri, M. ; Henchiri, C. ; Dhahri, R. ; Khelifi, J. ; Rahmouni, H. ; Dhahri, E. ; Omari, L.H. ; Tozri, A. ; Berber, Mohamed R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-af5ba715b6aea9c89e9a45078fd3d58ed60f0559f34e7706f47cc92f062c93233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>ac Electrical conductivity</topic><topic>Activation energy</topic><topic>Cobalt ferrites</topic><topic>Copper</topic><topic>Dielectric loss</topic><topic>Dielectric properties</topic><topic>Electrical resistivity</topic><topic>Energy value</topic><topic>Grain size distribution</topic><topic>High frequencies</topic><topic>Impedance spectroscopy</topic><topic>Nanoparticles</topic><topic>Phenomenon of relaxation</topic><topic>Relaxation time</topic><topic>Room temperature</topic><topic>Sol-gel processes</topic><topic>Spinel</topic><topic>Spinel ferrite</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nasri, M.</creatorcontrib><creatorcontrib>Henchiri, C.</creatorcontrib><creatorcontrib>Dhahri, R.</creatorcontrib><creatorcontrib>Khelifi, J.</creatorcontrib><creatorcontrib>Rahmouni, H.</creatorcontrib><creatorcontrib>Dhahri, E.</creatorcontrib><creatorcontrib>Omari, L.H.</creatorcontrib><creatorcontrib>Tozri, A.</creatorcontrib><creatorcontrib>Berber, Mohamed R.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Materials science &amp; engineering. B, Solid-state materials for advanced technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nasri, M.</au><au>Henchiri, C.</au><au>Dhahri, R.</au><au>Khelifi, J.</au><au>Rahmouni, H.</au><au>Dhahri, E.</au><au>Omari, L.H.</au><au>Tozri, A.</au><au>Berber, Mohamed R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural, dielectric, electrical and modulus spectroscopic characteristics of CoFeCuO4 spinel ferrite nanoparticles</atitle><jtitle>Materials science &amp; engineering. B, Solid-state materials for advanced technology</jtitle><date>2021-10</date><risdate>2021</risdate><volume>272</volume><spage>115331</spage><pages>115331-</pages><artnum>115331</artnum><issn>0921-5107</issn><eissn>1873-4944</eissn><abstract>[Display omitted] •CoFeCuO4 prepared by sol–gel method adopts a cubic symmetry with Fd3-m space group.•The temperature and frequency dependence of dielectric constants was investigated.•Dielectric analysis reveals a single thermally activated conduction mechanism.•Substitution of Fe by Cu increases ac conductivity and decreases the dielectric loss.•The mechanism responsible of electrical conductivity is related to the relaxation one. In this work, our focus is upon the synthesis of material having useful and less expensive high frequency applications. For this purpose, we used the sol–gel method to elaborate the Cu-substituted CoFe2O4. The XRD analysis confirmed the single-phase cubic spinel structure with the Fd3-m space group. The grain size distribution was traced through different methods. It confirms the nano-metric size of the compound. To elaborate the electrical and dielectric properties of the prepared sample, impedance spectroscopy was invested. It demonstrated the relaxing nature of our material and indicated that the substitution of Fe by Cu on CoFe2O4 increases the ac conductivity and decreases the dielectric loss especially at higher frequencies; the low loss values indicate the potential of these ferrites for high frequency applications at temperatures close to the room temperature. The activation energy value was estimated based on the relaxation time and the conductance curves analysis, the found value is around 0.33 eV which confirms the semiconductor character of our compound and its capacity to achieve a significant gain in productivity. Moreover, this obtained value indicates the relationship between the electrical conductivity mechanism and the relaxation one.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.mseb.2021.115331</doi></addata></record>
fulltext fulltext
identifier ISSN: 0921-5107
ispartof Materials science & engineering. B, Solid-state materials for advanced technology, 2021-10, Vol.272, p.115331, Article 115331
issn 0921-5107
1873-4944
language eng
recordid cdi_proquest_journals_2581069391
source Elsevier ScienceDirect Journals
subjects ac Electrical conductivity
Activation energy
Cobalt ferrites
Copper
Dielectric loss
Dielectric properties
Electrical resistivity
Energy value
Grain size distribution
High frequencies
Impedance spectroscopy
Nanoparticles
Phenomenon of relaxation
Relaxation time
Room temperature
Sol-gel processes
Spinel
Spinel ferrite
title Structural, dielectric, electrical and modulus spectroscopic characteristics of CoFeCuO4 spinel ferrite nanoparticles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T08%3A26%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural,%20dielectric,%20electrical%20and%20modulus%20spectroscopic%20characteristics%20of%20CoFeCuO4%20spinel%20ferrite%20nanoparticles&rft.jtitle=Materials%20science%20&%20engineering.%20B,%20Solid-state%20materials%20for%20advanced%20technology&rft.au=Nasri,%20M.&rft.date=2021-10&rft.volume=272&rft.spage=115331&rft.pages=115331-&rft.artnum=115331&rft.issn=0921-5107&rft.eissn=1873-4944&rft_id=info:doi/10.1016/j.mseb.2021.115331&rft_dat=%3Cproquest_cross%3E2581069391%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2581069391&rft_id=info:pmid/&rft_els_id=S0921510721002919&rfr_iscdi=true