Pore size analysis of carbons with heterogeneous kernels from reactive molecular dynamics model and quenched solid density functional theory
We presented a new kernel of heterogenous carbon surfaces constructed using the reactive molecular dynamics model (rMD). The rMD model explicitly incorporates edges and corrugations resulting from the oxidative etching of graphene walls. The rMD model eliminates the computational artifacts character...
Gespeichert in:
Veröffentlicht in: | Carbon (New York) 2021-10, Vol.183, p.672-684 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 684 |
---|---|
container_issue | |
container_start_page | 672 |
container_title | Carbon (New York) |
container_volume | 183 |
creator | Lucena, S.M.P. Oliveira, J.C.A. Gonçalves, D.V. Silvino, P.F.G. Dantas, S. Neimark, A.V. |
description | We presented a new kernel of heterogenous carbon surfaces constructed using the reactive molecular dynamics model (rMD). The rMD model explicitly incorporates edges and corrugations resulting from the oxidative etching of graphene walls. The rMD model eliminates the computational artifacts characteristic to the homogeneous pore wall models. In ultramicropores, early uptake is guided by the competition between central energetic adsorption sites and heterogeneities of the wall. In the larger pores, the central energy diminishes and the preferential adsorption sites are located in the pore wall. Comparisons between the rMD model, which mimics the surface roughness explicitly, and the quenched solid density functional theory (QSDFT) model are performed. The rMD model performs similarly to the QSDFT in the reproduction of the carbon experimental isotherms, indicating that it is a viable alternative to the implicit models for carbon characterization. In calculated PSDs, the rMD model attributes higher volumes to the ultramicropores than the QSDFT model due to enhanced adsorption on the surface defects. Finally, we tested the influence of the N2 molecular probe models on adsorption isotherms. It is found that the discrepancies between the nitrogen probe models on heterogeneous wall surfaces are smaller than those for the homogeneous models.
[Display omitted] |
doi_str_mv | 10.1016/j.carbon.2021.07.059 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2581014386</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0008622321007375</els_id><sourcerecordid>2581014386</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-cc6e4fd4a5267aad7bfca678c1e293748577e3b374292ccc4a4163603eb5e1593</originalsourceid><addsrcrecordid>eNp9kMtO5DAQRS3ESNP0zB-wsMQ6wa_EyWYkhHhJSLCAteW2K9PuScfgSkDhG-ajMYQ1K9ulqlPXh5BjzkrOeH26K51NmziUggleMl2yqj0gK95oWcim5YdkxRhriloI-ZMcIe7yUzVcrcj_-5iAYngDagfbzxiQxo4uPKSvYdzSLYyQ4l8YIE5I_0EaoEfapbinCawbwwvQfezBTb1N1M-D3QeHueShz1RPnycY3BY8xdgHTz0MGMaZdtOQh2NeS8ctxDT_Ij862yP8_jrX5PHy4uH8uri9u7o5P7stnJRqLJyrQXVe2UrU2lqvN52ztW4cB9FKrZpKa5CbfBOtcM4pq3gtayZhUwGvWrkmJwv3KcWcDUezi1PKOdCIqslKlWzq3KWWLpciYoLOPKWwt2k2nJkP72ZnFk_mw7th2rBP-J9lLEuClwDJoAv5_-BDAjcaH8P3gHe07ZFU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2581014386</pqid></control><display><type>article</type><title>Pore size analysis of carbons with heterogeneous kernels from reactive molecular dynamics model and quenched solid density functional theory</title><source>Elsevier ScienceDirect Journals</source><creator>Lucena, S.M.P. ; Oliveira, J.C.A. ; Gonçalves, D.V. ; Silvino, P.F.G. ; Dantas, S. ; Neimark, A.V.</creator><creatorcontrib>Lucena, S.M.P. ; Oliveira, J.C.A. ; Gonçalves, D.V. ; Silvino, P.F.G. ; Dantas, S. ; Neimark, A.V.</creatorcontrib><description>We presented a new kernel of heterogenous carbon surfaces constructed using the reactive molecular dynamics model (rMD). The rMD model explicitly incorporates edges and corrugations resulting from the oxidative etching of graphene walls. The rMD model eliminates the computational artifacts characteristic to the homogeneous pore wall models. In ultramicropores, early uptake is guided by the competition between central energetic adsorption sites and heterogeneities of the wall. In the larger pores, the central energy diminishes and the preferential adsorption sites are located in the pore wall. Comparisons between the rMD model, which mimics the surface roughness explicitly, and the quenched solid density functional theory (QSDFT) model are performed. The rMD model performs similarly to the QSDFT in the reproduction of the carbon experimental isotherms, indicating that it is a viable alternative to the implicit models for carbon characterization. In calculated PSDs, the rMD model attributes higher volumes to the ultramicropores than the QSDFT model due to enhanced adsorption on the surface defects. Finally, we tested the influence of the N2 molecular probe models on adsorption isotherms. It is found that the discrepancies between the nitrogen probe models on heterogeneous wall surfaces are smaller than those for the homogeneous models.
[Display omitted]</description><identifier>ISSN: 0008-6223</identifier><identifier>EISSN: 1873-3891</identifier><identifier>DOI: 10.1016/j.carbon.2021.07.059</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Adsorption ; Carbon ; Carbon characterization ; Density functional theory ; Graphene ; Heterogeneous model ; Isotherms ; Kernels ; Molecular dynamics ; Molecular simulation ; Molecular weight ; Pore size ; Quenching ; Surface chemistry ; Surface defects ; Surface roughness</subject><ispartof>Carbon (New York), 2021-10, Vol.183, p.672-684</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright Elsevier BV Oct 15, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-cc6e4fd4a5267aad7bfca678c1e293748577e3b374292ccc4a4163603eb5e1593</citedby><cites>FETCH-LOGICAL-c334t-cc6e4fd4a5267aad7bfca678c1e293748577e3b374292ccc4a4163603eb5e1593</cites><orcidid>0000-0002-9137-7481 ; 0000-0001-8379-2098 ; 0000-0002-3443-0389 ; 0000-0001-7168-4938 ; 0000-0002-0405-5813</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0008622321007375$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Lucena, S.M.P.</creatorcontrib><creatorcontrib>Oliveira, J.C.A.</creatorcontrib><creatorcontrib>Gonçalves, D.V.</creatorcontrib><creatorcontrib>Silvino, P.F.G.</creatorcontrib><creatorcontrib>Dantas, S.</creatorcontrib><creatorcontrib>Neimark, A.V.</creatorcontrib><title>Pore size analysis of carbons with heterogeneous kernels from reactive molecular dynamics model and quenched solid density functional theory</title><title>Carbon (New York)</title><description>We presented a new kernel of heterogenous carbon surfaces constructed using the reactive molecular dynamics model (rMD). The rMD model explicitly incorporates edges and corrugations resulting from the oxidative etching of graphene walls. The rMD model eliminates the computational artifacts characteristic to the homogeneous pore wall models. In ultramicropores, early uptake is guided by the competition between central energetic adsorption sites and heterogeneities of the wall. In the larger pores, the central energy diminishes and the preferential adsorption sites are located in the pore wall. Comparisons between the rMD model, which mimics the surface roughness explicitly, and the quenched solid density functional theory (QSDFT) model are performed. The rMD model performs similarly to the QSDFT in the reproduction of the carbon experimental isotherms, indicating that it is a viable alternative to the implicit models for carbon characterization. In calculated PSDs, the rMD model attributes higher volumes to the ultramicropores than the QSDFT model due to enhanced adsorption on the surface defects. Finally, we tested the influence of the N2 molecular probe models on adsorption isotherms. It is found that the discrepancies between the nitrogen probe models on heterogeneous wall surfaces are smaller than those for the homogeneous models.
[Display omitted]</description><subject>Adsorption</subject><subject>Carbon</subject><subject>Carbon characterization</subject><subject>Density functional theory</subject><subject>Graphene</subject><subject>Heterogeneous model</subject><subject>Isotherms</subject><subject>Kernels</subject><subject>Molecular dynamics</subject><subject>Molecular simulation</subject><subject>Molecular weight</subject><subject>Pore size</subject><subject>Quenching</subject><subject>Surface chemistry</subject><subject>Surface defects</subject><subject>Surface roughness</subject><issn>0008-6223</issn><issn>1873-3891</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMtO5DAQRS3ESNP0zB-wsMQ6wa_EyWYkhHhJSLCAteW2K9PuScfgSkDhG-ajMYQ1K9ulqlPXh5BjzkrOeH26K51NmziUggleMl2yqj0gK95oWcim5YdkxRhriloI-ZMcIe7yUzVcrcj_-5iAYngDagfbzxiQxo4uPKSvYdzSLYyQ4l8YIE5I_0EaoEfapbinCawbwwvQfezBTb1N1M-D3QeHueShz1RPnycY3BY8xdgHTz0MGMaZdtOQh2NeS8ctxDT_Ij862yP8_jrX5PHy4uH8uri9u7o5P7stnJRqLJyrQXVe2UrU2lqvN52ztW4cB9FKrZpKa5CbfBOtcM4pq3gtayZhUwGvWrkmJwv3KcWcDUezi1PKOdCIqslKlWzq3KWWLpciYoLOPKWwt2k2nJkP72ZnFk_mw7th2rBP-J9lLEuClwDJoAv5_-BDAjcaH8P3gHe07ZFU</recordid><startdate>20211015</startdate><enddate>20211015</enddate><creator>Lucena, S.M.P.</creator><creator>Oliveira, J.C.A.</creator><creator>Gonçalves, D.V.</creator><creator>Silvino, P.F.G.</creator><creator>Dantas, S.</creator><creator>Neimark, A.V.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-9137-7481</orcidid><orcidid>https://orcid.org/0000-0001-8379-2098</orcidid><orcidid>https://orcid.org/0000-0002-3443-0389</orcidid><orcidid>https://orcid.org/0000-0001-7168-4938</orcidid><orcidid>https://orcid.org/0000-0002-0405-5813</orcidid></search><sort><creationdate>20211015</creationdate><title>Pore size analysis of carbons with heterogeneous kernels from reactive molecular dynamics model and quenched solid density functional theory</title><author>Lucena, S.M.P. ; Oliveira, J.C.A. ; Gonçalves, D.V. ; Silvino, P.F.G. ; Dantas, S. ; Neimark, A.V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-cc6e4fd4a5267aad7bfca678c1e293748577e3b374292ccc4a4163603eb5e1593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adsorption</topic><topic>Carbon</topic><topic>Carbon characterization</topic><topic>Density functional theory</topic><topic>Graphene</topic><topic>Heterogeneous model</topic><topic>Isotherms</topic><topic>Kernels</topic><topic>Molecular dynamics</topic><topic>Molecular simulation</topic><topic>Molecular weight</topic><topic>Pore size</topic><topic>Quenching</topic><topic>Surface chemistry</topic><topic>Surface defects</topic><topic>Surface roughness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lucena, S.M.P.</creatorcontrib><creatorcontrib>Oliveira, J.C.A.</creatorcontrib><creatorcontrib>Gonçalves, D.V.</creatorcontrib><creatorcontrib>Silvino, P.F.G.</creatorcontrib><creatorcontrib>Dantas, S.</creatorcontrib><creatorcontrib>Neimark, A.V.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Carbon (New York)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lucena, S.M.P.</au><au>Oliveira, J.C.A.</au><au>Gonçalves, D.V.</au><au>Silvino, P.F.G.</au><au>Dantas, S.</au><au>Neimark, A.V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pore size analysis of carbons with heterogeneous kernels from reactive molecular dynamics model and quenched solid density functional theory</atitle><jtitle>Carbon (New York)</jtitle><date>2021-10-15</date><risdate>2021</risdate><volume>183</volume><spage>672</spage><epage>684</epage><pages>672-684</pages><issn>0008-6223</issn><eissn>1873-3891</eissn><abstract>We presented a new kernel of heterogenous carbon surfaces constructed using the reactive molecular dynamics model (rMD). The rMD model explicitly incorporates edges and corrugations resulting from the oxidative etching of graphene walls. The rMD model eliminates the computational artifacts characteristic to the homogeneous pore wall models. In ultramicropores, early uptake is guided by the competition between central energetic adsorption sites and heterogeneities of the wall. In the larger pores, the central energy diminishes and the preferential adsorption sites are located in the pore wall. Comparisons between the rMD model, which mimics the surface roughness explicitly, and the quenched solid density functional theory (QSDFT) model are performed. The rMD model performs similarly to the QSDFT in the reproduction of the carbon experimental isotherms, indicating that it is a viable alternative to the implicit models for carbon characterization. In calculated PSDs, the rMD model attributes higher volumes to the ultramicropores than the QSDFT model due to enhanced adsorption on the surface defects. Finally, we tested the influence of the N2 molecular probe models on adsorption isotherms. It is found that the discrepancies between the nitrogen probe models on heterogeneous wall surfaces are smaller than those for the homogeneous models.
[Display omitted]</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.carbon.2021.07.059</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-9137-7481</orcidid><orcidid>https://orcid.org/0000-0001-8379-2098</orcidid><orcidid>https://orcid.org/0000-0002-3443-0389</orcidid><orcidid>https://orcid.org/0000-0001-7168-4938</orcidid><orcidid>https://orcid.org/0000-0002-0405-5813</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0008-6223 |
ispartof | Carbon (New York), 2021-10, Vol.183, p.672-684 |
issn | 0008-6223 1873-3891 |
language | eng |
recordid | cdi_proquest_journals_2581014386 |
source | Elsevier ScienceDirect Journals |
subjects | Adsorption Carbon Carbon characterization Density functional theory Graphene Heterogeneous model Isotherms Kernels Molecular dynamics Molecular simulation Molecular weight Pore size Quenching Surface chemistry Surface defects Surface roughness |
title | Pore size analysis of carbons with heterogeneous kernels from reactive molecular dynamics model and quenched solid density functional theory |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T05%3A22%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pore%20size%20analysis%20of%20carbons%20with%20heterogeneous%20kernels%20from%20reactive%20molecular%20dynamics%20model%20and%20quenched%20solid%20density%20functional%20theory&rft.jtitle=Carbon%20(New%20York)&rft.au=Lucena,%20S.M.P.&rft.date=2021-10-15&rft.volume=183&rft.spage=672&rft.epage=684&rft.pages=672-684&rft.issn=0008-6223&rft.eissn=1873-3891&rft_id=info:doi/10.1016/j.carbon.2021.07.059&rft_dat=%3Cproquest_cross%3E2581014386%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2581014386&rft_id=info:pmid/&rft_els_id=S0008622321007375&rfr_iscdi=true |