Nitrogen doped carbon quantum dots as Co-active materials for highly efficient dye sensitized solar cells

High-quality nitrogen-doped carbon quantum dots (NCQDs) are synthesized using domestic microwave-assisted pyrolysis method. These show excellent physiochemical and optical properties such as wide spectral adsorption, high charge carrier extraction, fast charge carrier transportation, and tuneable em...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Carbon (New York) 2021-10, Vol.183, p.169-175
Hauptverfasser: Shejale, Kiran P., Jaiswal, Arun, Kumar, Aditya, Saxena, Sumit, Shukla, Shobha
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 175
container_issue
container_start_page 169
container_title Carbon (New York)
container_volume 183
creator Shejale, Kiran P.
Jaiswal, Arun
Kumar, Aditya
Saxena, Sumit
Shukla, Shobha
description High-quality nitrogen-doped carbon quantum dots (NCQDs) are synthesized using domestic microwave-assisted pyrolysis method. These show excellent physiochemical and optical properties such as wide spectral adsorption, high charge carrier extraction, fast charge carrier transportation, and tuneable emission. These NCQDs are introduced in the dye sensitized solar cell (DSSC)/quantum dot sensitized solar cell (QDSSC) structure to improve the performance. The effect of synthesized NCQD as sensitizer, co-sensitizer, and co-photoactive layers is investigated for the DSSC/QDSSC structure. High photoconversion efficiency of 8.75% and photocurrent density of 18.13 mA/cm2 is achieved under one sun irradiation when NCQDs are used as co-photoactive layer. The obtained power conversion efficiency is approximately 55% and 99% better than NCQDs as co-sensitizer and sensitizer, respectively. The incorporation of the NCQDs in the photoactive layer synergically enhanced photo absorbance and reduced recombination between photoanode and electrolyte. A large number of anchoring sites for dye, highly conducting photoanode, fast charge carrier transportation, and inherent light-emitting photo-fluorescent property of NCQDs in mesoporous titania are understood to be responsible for this enhancement. The optimized weight ratio of citric acid and urea in the synthesis of NCQDs has provided the widened light response, low recombination rate, and high charge transport in the DSSC structure. [Display omitted]
doi_str_mv 10.1016/j.carbon.2021.06.090
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2581011447</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0008622321006783</els_id><sourcerecordid>2581011447</sourcerecordid><originalsourceid>FETCH-LOGICAL-c264t-d31bf6680f468f5e931bca5e645ffe4814f8a7ce508e55fd169e2498114d8ab53</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKvfwEPA867JbpJmL4IU_0HRi55Dmp20WbabNskK9dObsp49DTO892bmh9AtJSUlVNx3pdFh7YeyIhUtiShJQ87QjMpFXdSyoedoRgiRhaiq-hJdxdjllknKZsi9uxT8Bgbc-j20eArCh1EPadzlYYpYR7z0hTbJfQPe6QTB6T5i6wPeus22P2Kw1hkHQ8LtEXCEIbrkfnJc9L0O2EDfx2t0YbMNbv7qHH09P30uX4vVx8vb8nFVmEqwVLQ1XVshJLFMSMuhyb3RHATj1sLpaCv1wgAnEji3LRUNVKyRlLJW6jWv5-huyt0HfxghJtX5MQx5paq4zLwoY4usYpPKBB9jAKv2we10OCpK1Amq6tTEQp2gKiJUhpptD5MN8gffDoKKp78NtC6ASar17v-AX6BYgyU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2581011447</pqid></control><display><type>article</type><title>Nitrogen doped carbon quantum dots as Co-active materials for highly efficient dye sensitized solar cells</title><source>Access via ScienceDirect (Elsevier)</source><creator>Shejale, Kiran P. ; Jaiswal, Arun ; Kumar, Aditya ; Saxena, Sumit ; Shukla, Shobha</creator><creatorcontrib>Shejale, Kiran P. ; Jaiswal, Arun ; Kumar, Aditya ; Saxena, Sumit ; Shukla, Shobha</creatorcontrib><description>High-quality nitrogen-doped carbon quantum dots (NCQDs) are synthesized using domestic microwave-assisted pyrolysis method. These show excellent physiochemical and optical properties such as wide spectral adsorption, high charge carrier extraction, fast charge carrier transportation, and tuneable emission. These NCQDs are introduced in the dye sensitized solar cell (DSSC)/quantum dot sensitized solar cell (QDSSC) structure to improve the performance. The effect of synthesized NCQD as sensitizer, co-sensitizer, and co-photoactive layers is investigated for the DSSC/QDSSC structure. High photoconversion efficiency of 8.75% and photocurrent density of 18.13 mA/cm2 is achieved under one sun irradiation when NCQDs are used as co-photoactive layer. The obtained power conversion efficiency is approximately 55% and 99% better than NCQDs as co-sensitizer and sensitizer, respectively. The incorporation of the NCQDs in the photoactive layer synergically enhanced photo absorbance and reduced recombination between photoanode and electrolyte. A large number of anchoring sites for dye, highly conducting photoanode, fast charge carrier transportation, and inherent light-emitting photo-fluorescent property of NCQDs in mesoporous titania are understood to be responsible for this enhancement. The optimized weight ratio of citric acid and urea in the synthesis of NCQDs has provided the widened light response, low recombination rate, and high charge transport in the DSSC structure. [Display omitted]</description><identifier>ISSN: 0008-6223</identifier><identifier>EISSN: 1873-3891</identifier><identifier>DOI: 10.1016/j.carbon.2021.06.090</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Carbon ; Carbon quantum dots ; Charge transport ; Citric acid ; Current carriers ; DSSC ; Dye-sensitized solar cells ; Dyes ; Electrolytic cells ; Energy conversion efficiency ; Fluorescence ; Light emission ; Microwave synthesis ; Optical properties ; Photoelectric effect ; Photovoltaic cells ; Physiochemistry ; Pyrolysis ; Quantum dots ; Quantum efficiency ; Solar energy ; Synthesis</subject><ispartof>Carbon (New York), 2021-10, Vol.183, p.169-175</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright Elsevier BV Oct 15, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c264t-d31bf6680f468f5e931bca5e645ffe4814f8a7ce508e55fd169e2498114d8ab53</citedby><cites>FETCH-LOGICAL-c264t-d31bf6680f468f5e931bca5e645ffe4814f8a7ce508e55fd169e2498114d8ab53</cites><orcidid>0000-0003-2323-4814</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.carbon.2021.06.090$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Shejale, Kiran P.</creatorcontrib><creatorcontrib>Jaiswal, Arun</creatorcontrib><creatorcontrib>Kumar, Aditya</creatorcontrib><creatorcontrib>Saxena, Sumit</creatorcontrib><creatorcontrib>Shukla, Shobha</creatorcontrib><title>Nitrogen doped carbon quantum dots as Co-active materials for highly efficient dye sensitized solar cells</title><title>Carbon (New York)</title><description>High-quality nitrogen-doped carbon quantum dots (NCQDs) are synthesized using domestic microwave-assisted pyrolysis method. These show excellent physiochemical and optical properties such as wide spectral adsorption, high charge carrier extraction, fast charge carrier transportation, and tuneable emission. These NCQDs are introduced in the dye sensitized solar cell (DSSC)/quantum dot sensitized solar cell (QDSSC) structure to improve the performance. The effect of synthesized NCQD as sensitizer, co-sensitizer, and co-photoactive layers is investigated for the DSSC/QDSSC structure. High photoconversion efficiency of 8.75% and photocurrent density of 18.13 mA/cm2 is achieved under one sun irradiation when NCQDs are used as co-photoactive layer. The obtained power conversion efficiency is approximately 55% and 99% better than NCQDs as co-sensitizer and sensitizer, respectively. The incorporation of the NCQDs in the photoactive layer synergically enhanced photo absorbance and reduced recombination between photoanode and electrolyte. A large number of anchoring sites for dye, highly conducting photoanode, fast charge carrier transportation, and inherent light-emitting photo-fluorescent property of NCQDs in mesoporous titania are understood to be responsible for this enhancement. The optimized weight ratio of citric acid and urea in the synthesis of NCQDs has provided the widened light response, low recombination rate, and high charge transport in the DSSC structure. [Display omitted]</description><subject>Carbon</subject><subject>Carbon quantum dots</subject><subject>Charge transport</subject><subject>Citric acid</subject><subject>Current carriers</subject><subject>DSSC</subject><subject>Dye-sensitized solar cells</subject><subject>Dyes</subject><subject>Electrolytic cells</subject><subject>Energy conversion efficiency</subject><subject>Fluorescence</subject><subject>Light emission</subject><subject>Microwave synthesis</subject><subject>Optical properties</subject><subject>Photoelectric effect</subject><subject>Photovoltaic cells</subject><subject>Physiochemistry</subject><subject>Pyrolysis</subject><subject>Quantum dots</subject><subject>Quantum efficiency</subject><subject>Solar energy</subject><subject>Synthesis</subject><issn>0008-6223</issn><issn>1873-3891</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKvfwEPA867JbpJmL4IU_0HRi55Dmp20WbabNskK9dObsp49DTO892bmh9AtJSUlVNx3pdFh7YeyIhUtiShJQ87QjMpFXdSyoedoRgiRhaiq-hJdxdjllknKZsi9uxT8Bgbc-j20eArCh1EPadzlYYpYR7z0hTbJfQPe6QTB6T5i6wPeus22P2Kw1hkHQ8LtEXCEIbrkfnJc9L0O2EDfx2t0YbMNbv7qHH09P30uX4vVx8vb8nFVmEqwVLQ1XVshJLFMSMuhyb3RHATj1sLpaCv1wgAnEji3LRUNVKyRlLJW6jWv5-huyt0HfxghJtX5MQx5paq4zLwoY4usYpPKBB9jAKv2we10OCpK1Amq6tTEQp2gKiJUhpptD5MN8gffDoKKp78NtC6ASar17v-AX6BYgyU</recordid><startdate>20211015</startdate><enddate>20211015</enddate><creator>Shejale, Kiran P.</creator><creator>Jaiswal, Arun</creator><creator>Kumar, Aditya</creator><creator>Saxena, Sumit</creator><creator>Shukla, Shobha</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-2323-4814</orcidid></search><sort><creationdate>20211015</creationdate><title>Nitrogen doped carbon quantum dots as Co-active materials for highly efficient dye sensitized solar cells</title><author>Shejale, Kiran P. ; Jaiswal, Arun ; Kumar, Aditya ; Saxena, Sumit ; Shukla, Shobha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c264t-d31bf6680f468f5e931bca5e645ffe4814f8a7ce508e55fd169e2498114d8ab53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Carbon</topic><topic>Carbon quantum dots</topic><topic>Charge transport</topic><topic>Citric acid</topic><topic>Current carriers</topic><topic>DSSC</topic><topic>Dye-sensitized solar cells</topic><topic>Dyes</topic><topic>Electrolytic cells</topic><topic>Energy conversion efficiency</topic><topic>Fluorescence</topic><topic>Light emission</topic><topic>Microwave synthesis</topic><topic>Optical properties</topic><topic>Photoelectric effect</topic><topic>Photovoltaic cells</topic><topic>Physiochemistry</topic><topic>Pyrolysis</topic><topic>Quantum dots</topic><topic>Quantum efficiency</topic><topic>Solar energy</topic><topic>Synthesis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shejale, Kiran P.</creatorcontrib><creatorcontrib>Jaiswal, Arun</creatorcontrib><creatorcontrib>Kumar, Aditya</creatorcontrib><creatorcontrib>Saxena, Sumit</creatorcontrib><creatorcontrib>Shukla, Shobha</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Carbon (New York)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shejale, Kiran P.</au><au>Jaiswal, Arun</au><au>Kumar, Aditya</au><au>Saxena, Sumit</au><au>Shukla, Shobha</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nitrogen doped carbon quantum dots as Co-active materials for highly efficient dye sensitized solar cells</atitle><jtitle>Carbon (New York)</jtitle><date>2021-10-15</date><risdate>2021</risdate><volume>183</volume><spage>169</spage><epage>175</epage><pages>169-175</pages><issn>0008-6223</issn><eissn>1873-3891</eissn><abstract>High-quality nitrogen-doped carbon quantum dots (NCQDs) are synthesized using domestic microwave-assisted pyrolysis method. These show excellent physiochemical and optical properties such as wide spectral adsorption, high charge carrier extraction, fast charge carrier transportation, and tuneable emission. These NCQDs are introduced in the dye sensitized solar cell (DSSC)/quantum dot sensitized solar cell (QDSSC) structure to improve the performance. The effect of synthesized NCQD as sensitizer, co-sensitizer, and co-photoactive layers is investigated for the DSSC/QDSSC structure. High photoconversion efficiency of 8.75% and photocurrent density of 18.13 mA/cm2 is achieved under one sun irradiation when NCQDs are used as co-photoactive layer. The obtained power conversion efficiency is approximately 55% and 99% better than NCQDs as co-sensitizer and sensitizer, respectively. The incorporation of the NCQDs in the photoactive layer synergically enhanced photo absorbance and reduced recombination between photoanode and electrolyte. A large number of anchoring sites for dye, highly conducting photoanode, fast charge carrier transportation, and inherent light-emitting photo-fluorescent property of NCQDs in mesoporous titania are understood to be responsible for this enhancement. The optimized weight ratio of citric acid and urea in the synthesis of NCQDs has provided the widened light response, low recombination rate, and high charge transport in the DSSC structure. [Display omitted]</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.carbon.2021.06.090</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-2323-4814</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0008-6223
ispartof Carbon (New York), 2021-10, Vol.183, p.169-175
issn 0008-6223
1873-3891
language eng
recordid cdi_proquest_journals_2581011447
source Access via ScienceDirect (Elsevier)
subjects Carbon
Carbon quantum dots
Charge transport
Citric acid
Current carriers
DSSC
Dye-sensitized solar cells
Dyes
Electrolytic cells
Energy conversion efficiency
Fluorescence
Light emission
Microwave synthesis
Optical properties
Photoelectric effect
Photovoltaic cells
Physiochemistry
Pyrolysis
Quantum dots
Quantum efficiency
Solar energy
Synthesis
title Nitrogen doped carbon quantum dots as Co-active materials for highly efficient dye sensitized solar cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T23%3A07%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nitrogen%20doped%20carbon%20quantum%20dots%20as%20Co-active%20materials%20for%20highly%20efficient%20dye%20sensitized%20solar%20cells&rft.jtitle=Carbon%20(New%20York)&rft.au=Shejale,%20Kiran%20P.&rft.date=2021-10-15&rft.volume=183&rft.spage=169&rft.epage=175&rft.pages=169-175&rft.issn=0008-6223&rft.eissn=1873-3891&rft_id=info:doi/10.1016/j.carbon.2021.06.090&rft_dat=%3Cproquest_cross%3E2581011447%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2581011447&rft_id=info:pmid/&rft_els_id=S0008622321006783&rfr_iscdi=true