Superior rate-capability and long-lifespan carbon nanotube-in-nanotube@Sb2S3 anode for lithium-ion storage

It is vital to improve the rate capability and cycling performance of Sb2S3 to promote its application in lithium-ion batteries. Herein, Sb2S3 is successfully anchored inside a carbon nanotube-in-nanotube via a multi-step method based on a metal–organic framework and carbon nanotubes. The composite...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2021-10, Vol.9 (39), p.22334-22346
Hauptverfasser: Yang, Z Y, Yuan, Y F, Zhu, M, Yin, S M, Cheng, J P, Guo, S Y
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 22346
container_issue 39
container_start_page 22334
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 9
creator Yang, Z Y
Yuan, Y F
Zhu, M
Yin, S M
Cheng, J P
Guo, S Y
description It is vital to improve the rate capability and cycling performance of Sb2S3 to promote its application in lithium-ion batteries. Herein, Sb2S3 is successfully anchored inside a carbon nanotube-in-nanotube via a multi-step method based on a metal–organic framework and carbon nanotubes. The composite has a large specific surface area (48.1 m2 g−1), relatively high content of Sb2S3 (57%), and an external highly conductive nitrogen-doped amorphous carbon nanotube. Benefitting from these advanced structure advantages, such as well-confined Sb2S3, completely closed internal void space, highly conductive carbon matrix, and formation of C–S covalent bonds, the composite exhibits superior lithium storage performance. The rate capability is its highlight. Even at 15 A g−1, the discharge capacity still reaches 361 mA h g−1. After the rate test, a cycling test at 5 A g−1 up to 400 cycles demonstrates its excellent structural stability. The cycling performance is very impressive (710.5 mA h g−1 at 1 A g−1 after 1500 cycles, 316 mA h g−1 at 5 A g−1 after 1700 cycles, 201.5 mA h g−1 at 10 A g−1 after 1000 cycles). The reversible capacity is outstanding (1117.2 mA h g−1 at 0.1 A g−1). Electrochemical kinetic analyses and ex situ observation of the cycled composite are studied in detail to comprehensively elucidate its electrochemical mechanism. It can be concluded that carbon nanotube-in-nanotube@Sb2S3 is a promising anode material for high-performance lithium-ion batteries.
doi_str_mv 10.1039/d1ta06708g
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2580981920</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2580981920</sourcerecordid><originalsourceid>FETCH-LOGICAL-c154t-2e0056174c498f2d3ea7a8d075be0e5ae304bdc01eed6b20a5022e28364da1a43</originalsourceid><addsrcrecordid>eNo9jUtLxDAUhYMoOIyz8RcUXEdvXm2yUwZfMOCiuh5um9uxQ01qmi789xZ8nM05m-87jF0KuBag3I0XGaGswB5O2EqCAV5pV57-b2vP2WaajrDEApTOrdixnkdKfUxFwky8xRGbfujzV4HBF0MMBz70HU0jhqLF1MRQBAwxzw3xPvC_fVs3slYLEz0V3WJbFO_9_MH7BZhyTHigC3bW4TDR5rfX7O3h_nX7xHcvj8_bux1vhdGZSwIwpah0q53tpFeEFVoPlWkIyCAp0I1vQRD5spGABqQkaVWpPQrUas2ufrxjip8zTXl_jHMKy-VeGgvOCidBfQP59Fr8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2580981920</pqid></control><display><type>article</type><title>Superior rate-capability and long-lifespan carbon nanotube-in-nanotube@Sb2S3 anode for lithium-ion storage</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Yang, Z Y ; Yuan, Y F ; Zhu, M ; Yin, S M ; Cheng, J P ; Guo, S Y</creator><creatorcontrib>Yang, Z Y ; Yuan, Y F ; Zhu, M ; Yin, S M ; Cheng, J P ; Guo, S Y</creatorcontrib><description>It is vital to improve the rate capability and cycling performance of Sb2S3 to promote its application in lithium-ion batteries. Herein, Sb2S3 is successfully anchored inside a carbon nanotube-in-nanotube via a multi-step method based on a metal–organic framework and carbon nanotubes. The composite has a large specific surface area (48.1 m2 g−1), relatively high content of Sb2S3 (57%), and an external highly conductive nitrogen-doped amorphous carbon nanotube. Benefitting from these advanced structure advantages, such as well-confined Sb2S3, completely closed internal void space, highly conductive carbon matrix, and formation of C–S covalent bonds, the composite exhibits superior lithium storage performance. The rate capability is its highlight. Even at 15 A g−1, the discharge capacity still reaches 361 mA h g−1. After the rate test, a cycling test at 5 A g−1 up to 400 cycles demonstrates its excellent structural stability. The cycling performance is very impressive (710.5 mA h g−1 at 1 A g−1 after 1500 cycles, 316 mA h g−1 at 5 A g−1 after 1700 cycles, 201.5 mA h g−1 at 10 A g−1 after 1000 cycles). The reversible capacity is outstanding (1117.2 mA h g−1 at 0.1 A g−1). Electrochemical kinetic analyses and ex situ observation of the cycled composite are studied in detail to comprehensively elucidate its electrochemical mechanism. It can be concluded that carbon nanotube-in-nanotube@Sb2S3 is a promising anode material for high-performance lithium-ion batteries.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d1ta06708g</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Anodes ; Carbon ; Carbon nanotubes ; Covalent bonds ; Cycles ; Electrochemistry ; Electrode materials ; Ion storage ; Life span ; Lithium ; Lithium-ion batteries ; Metal-organic frameworks ; Nanotechnology ; Nanotubes ; Rechargeable batteries ; Structural stability ; Void space</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2021-10, Vol.9 (39), p.22334-22346</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c154t-2e0056174c498f2d3ea7a8d075be0e5ae304bdc01eed6b20a5022e28364da1a43</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Yang, Z Y</creatorcontrib><creatorcontrib>Yuan, Y F</creatorcontrib><creatorcontrib>Zhu, M</creatorcontrib><creatorcontrib>Yin, S M</creatorcontrib><creatorcontrib>Cheng, J P</creatorcontrib><creatorcontrib>Guo, S Y</creatorcontrib><title>Superior rate-capability and long-lifespan carbon nanotube-in-nanotube@Sb2S3 anode for lithium-ion storage</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>It is vital to improve the rate capability and cycling performance of Sb2S3 to promote its application in lithium-ion batteries. Herein, Sb2S3 is successfully anchored inside a carbon nanotube-in-nanotube via a multi-step method based on a metal–organic framework and carbon nanotubes. The composite has a large specific surface area (48.1 m2 g−1), relatively high content of Sb2S3 (57%), and an external highly conductive nitrogen-doped amorphous carbon nanotube. Benefitting from these advanced structure advantages, such as well-confined Sb2S3, completely closed internal void space, highly conductive carbon matrix, and formation of C–S covalent bonds, the composite exhibits superior lithium storage performance. The rate capability is its highlight. Even at 15 A g−1, the discharge capacity still reaches 361 mA h g−1. After the rate test, a cycling test at 5 A g−1 up to 400 cycles demonstrates its excellent structural stability. The cycling performance is very impressive (710.5 mA h g−1 at 1 A g−1 after 1500 cycles, 316 mA h g−1 at 5 A g−1 after 1700 cycles, 201.5 mA h g−1 at 10 A g−1 after 1000 cycles). The reversible capacity is outstanding (1117.2 mA h g−1 at 0.1 A g−1). Electrochemical kinetic analyses and ex situ observation of the cycled composite are studied in detail to comprehensively elucidate its electrochemical mechanism. It can be concluded that carbon nanotube-in-nanotube@Sb2S3 is a promising anode material for high-performance lithium-ion batteries.</description><subject>Anodes</subject><subject>Carbon</subject><subject>Carbon nanotubes</subject><subject>Covalent bonds</subject><subject>Cycles</subject><subject>Electrochemistry</subject><subject>Electrode materials</subject><subject>Ion storage</subject><subject>Life span</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Metal-organic frameworks</subject><subject>Nanotechnology</subject><subject>Nanotubes</subject><subject>Rechargeable batteries</subject><subject>Structural stability</subject><subject>Void space</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9jUtLxDAUhYMoOIyz8RcUXEdvXm2yUwZfMOCiuh5um9uxQ01qmi789xZ8nM05m-87jF0KuBag3I0XGaGswB5O2EqCAV5pV57-b2vP2WaajrDEApTOrdixnkdKfUxFwky8xRGbfujzV4HBF0MMBz70HU0jhqLF1MRQBAwxzw3xPvC_fVs3slYLEz0V3WJbFO_9_MH7BZhyTHigC3bW4TDR5rfX7O3h_nX7xHcvj8_bux1vhdGZSwIwpah0q53tpFeEFVoPlWkIyCAp0I1vQRD5spGABqQkaVWpPQrUas2ufrxjip8zTXl_jHMKy-VeGgvOCidBfQP59Fr8</recordid><startdate>20211012</startdate><enddate>20211012</enddate><creator>Yang, Z Y</creator><creator>Yuan, Y F</creator><creator>Zhu, M</creator><creator>Yin, S M</creator><creator>Cheng, J P</creator><creator>Guo, S Y</creator><general>Royal Society of Chemistry</general><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20211012</creationdate><title>Superior rate-capability and long-lifespan carbon nanotube-in-nanotube@Sb2S3 anode for lithium-ion storage</title><author>Yang, Z Y ; Yuan, Y F ; Zhu, M ; Yin, S M ; Cheng, J P ; Guo, S Y</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c154t-2e0056174c498f2d3ea7a8d075be0e5ae304bdc01eed6b20a5022e28364da1a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Anodes</topic><topic>Carbon</topic><topic>Carbon nanotubes</topic><topic>Covalent bonds</topic><topic>Cycles</topic><topic>Electrochemistry</topic><topic>Electrode materials</topic><topic>Ion storage</topic><topic>Life span</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Metal-organic frameworks</topic><topic>Nanotechnology</topic><topic>Nanotubes</topic><topic>Rechargeable batteries</topic><topic>Structural stability</topic><topic>Void space</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Z Y</creatorcontrib><creatorcontrib>Yuan, Y F</creatorcontrib><creatorcontrib>Zhu, M</creatorcontrib><creatorcontrib>Yin, S M</creatorcontrib><creatorcontrib>Cheng, J P</creatorcontrib><creatorcontrib>Guo, S Y</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Z Y</au><au>Yuan, Y F</au><au>Zhu, M</au><au>Yin, S M</au><au>Cheng, J P</au><au>Guo, S Y</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Superior rate-capability and long-lifespan carbon nanotube-in-nanotube@Sb2S3 anode for lithium-ion storage</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2021-10-12</date><risdate>2021</risdate><volume>9</volume><issue>39</issue><spage>22334</spage><epage>22346</epage><pages>22334-22346</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>It is vital to improve the rate capability and cycling performance of Sb2S3 to promote its application in lithium-ion batteries. Herein, Sb2S3 is successfully anchored inside a carbon nanotube-in-nanotube via a multi-step method based on a metal–organic framework and carbon nanotubes. The composite has a large specific surface area (48.1 m2 g−1), relatively high content of Sb2S3 (57%), and an external highly conductive nitrogen-doped amorphous carbon nanotube. Benefitting from these advanced structure advantages, such as well-confined Sb2S3, completely closed internal void space, highly conductive carbon matrix, and formation of C–S covalent bonds, the composite exhibits superior lithium storage performance. The rate capability is its highlight. Even at 15 A g−1, the discharge capacity still reaches 361 mA h g−1. After the rate test, a cycling test at 5 A g−1 up to 400 cycles demonstrates its excellent structural stability. The cycling performance is very impressive (710.5 mA h g−1 at 1 A g−1 after 1500 cycles, 316 mA h g−1 at 5 A g−1 after 1700 cycles, 201.5 mA h g−1 at 10 A g−1 after 1000 cycles). The reversible capacity is outstanding (1117.2 mA h g−1 at 0.1 A g−1). Electrochemical kinetic analyses and ex situ observation of the cycled composite are studied in detail to comprehensively elucidate its electrochemical mechanism. It can be concluded that carbon nanotube-in-nanotube@Sb2S3 is a promising anode material for high-performance lithium-ion batteries.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d1ta06708g</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2021-10, Vol.9 (39), p.22334-22346
issn 2050-7488
2050-7496
language eng
recordid cdi_proquest_journals_2580981920
source Royal Society Of Chemistry Journals 2008-
subjects Anodes
Carbon
Carbon nanotubes
Covalent bonds
Cycles
Electrochemistry
Electrode materials
Ion storage
Life span
Lithium
Lithium-ion batteries
Metal-organic frameworks
Nanotechnology
Nanotubes
Rechargeable batteries
Structural stability
Void space
title Superior rate-capability and long-lifespan carbon nanotube-in-nanotube@Sb2S3 anode for lithium-ion storage
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T06%3A29%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Superior%20rate-capability%20and%20long-lifespan%20carbon%20nanotube-in-nanotube@Sb2S3%20anode%20for%20lithium-ion%20storage&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Yang,%20Z%20Y&rft.date=2021-10-12&rft.volume=9&rft.issue=39&rft.spage=22334&rft.epage=22346&rft.pages=22334-22346&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d1ta06708g&rft_dat=%3Cproquest%3E2580981920%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2580981920&rft_id=info:pmid/&rfr_iscdi=true