A Cost-Aware DNN-Based FDI Technology for Solenoid Pumps
Fluid Pumps serve a critical function in hydraulic and thermodynamic systems, and this often exposes them to prolonged use, leading to fatigue, stress, contamination, filter clogging, etc. On one hand, vibration monitoring for hydraulic components has shown reliable efficiencies in fault detection a...
Gespeichert in:
Veröffentlicht in: | Electronics (Basel) 2021-10, Vol.10 (19), p.2323 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 19 |
container_start_page | 2323 |
container_title | Electronics (Basel) |
container_volume | 10 |
creator | Kim, Suju Akpudo, Ugochukwu Ejike Hur, Jang-Wook |
description | Fluid Pumps serve a critical function in hydraulic and thermodynamic systems, and this often exposes them to prolonged use, leading to fatigue, stress, contamination, filter clogging, etc. On one hand, vibration monitoring for hydraulic components has shown reliable efficiencies in fault detection and isolation (FDI) practices. On the other hand, signal processing techniques provide reliable FDI parameters for artificial intelligence (AI)-based data-driven diagnostics (and prognostics) and have recently attracted global interest across different disciplines and applications. Particularly for cost-aware systems, the choice of diagnostic parameters determines the reliability of an FDI/diagnostic model. By extracting (and selecting) discriminative spectral and transient features from solenoid pump vibration signals, accurate diagnostics across operating conditions can be achieved using AI-based FDI algorithms. This study employs a deep neural network (DNN) for fault diagnosis after a correlation-based selection of discriminative spectral and transient features. To solve the problem of hyperparameter selection for the proposed model, a grid search technique was employed for optimal search for parameters (number of layers, neurons, activation function, weight optimizer, etc.) on different network architectures.The results reveal the high accuracy of a three-layer DNN with ReLU activation function, with a test accuracy of 99.23% and a minimal false alarm rate on a case study. |
doi_str_mv | 10.3390/electronics10192323 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2580971155</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2580971155</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-29cc5316ccefbe784b3447f3545e23c09bb359883d6bd01830aba452360a97b83</originalsourceid><addsrcrecordid>eNptULFOwzAUtBBIVKVfwGKJ2WD7xYk9hpRCpaogUebIdhxIlcbBToT69wSVgYFb7obT3ekQumb0FkDRO9c6OwTfNTYyyhQHDmdoxmmmiOKKn__Rl2gR455OUAwk0BmSOS58HEj-pYPDy-2W3OvoKrxarvHO2Y_Ot_79iGsf8KtvXeebCr-Mhz5eoYtat9EtfnmO3lYPu-KJbJ4f10W-IRY4HwhX1gpgqbWuNi6TiYEkyWoQiXAcLFXGgFBSQpWairJpkzY6ERxSqlVmJMzRzSm3D_5zdHEo934M3VRZciGpyhgTYnLByWWDjzG4uuxDc9DhWDJa_rxU_vMSfAPEaVrO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2580971155</pqid></control><display><type>article</type><title>A Cost-Aware DNN-Based FDI Technology for Solenoid Pumps</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Kim, Suju ; Akpudo, Ugochukwu Ejike ; Hur, Jang-Wook</creator><creatorcontrib>Kim, Suju ; Akpudo, Ugochukwu Ejike ; Hur, Jang-Wook</creatorcontrib><description>Fluid Pumps serve a critical function in hydraulic and thermodynamic systems, and this often exposes them to prolonged use, leading to fatigue, stress, contamination, filter clogging, etc. On one hand, vibration monitoring for hydraulic components has shown reliable efficiencies in fault detection and isolation (FDI) practices. On the other hand, signal processing techniques provide reliable FDI parameters for artificial intelligence (AI)-based data-driven diagnostics (and prognostics) and have recently attracted global interest across different disciplines and applications. Particularly for cost-aware systems, the choice of diagnostic parameters determines the reliability of an FDI/diagnostic model. By extracting (and selecting) discriminative spectral and transient features from solenoid pump vibration signals, accurate diagnostics across operating conditions can be achieved using AI-based FDI algorithms. This study employs a deep neural network (DNN) for fault diagnosis after a correlation-based selection of discriminative spectral and transient features. To solve the problem of hyperparameter selection for the proposed model, a grid search technique was employed for optimal search for parameters (number of layers, neurons, activation function, weight optimizer, etc.) on different network architectures.The results reveal the high accuracy of a three-layer DNN with ReLU activation function, with a test accuracy of 99.23% and a minimal false alarm rate on a case study.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics10192323</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Artificial intelligence ; Artificial neural networks ; Computer architecture ; Costs ; Failure ; False alarms ; Fault detection ; Fault diagnosis ; Feature extraction ; Feature selection ; Mathematical models ; Neural networks ; Parameter identification ; Parameters ; Propagation ; Pumps ; Signal processing ; Solenoids ; Vibration monitoring ; Wavelet transforms</subject><ispartof>Electronics (Basel), 2021-10, Vol.10 (19), p.2323</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-29cc5316ccefbe784b3447f3545e23c09bb359883d6bd01830aba452360a97b83</citedby><cites>FETCH-LOGICAL-c322t-29cc5316ccefbe784b3447f3545e23c09bb359883d6bd01830aba452360a97b83</cites><orcidid>0000-0003-4221-5192</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids></links><search><creatorcontrib>Kim, Suju</creatorcontrib><creatorcontrib>Akpudo, Ugochukwu Ejike</creatorcontrib><creatorcontrib>Hur, Jang-Wook</creatorcontrib><title>A Cost-Aware DNN-Based FDI Technology for Solenoid Pumps</title><title>Electronics (Basel)</title><description>Fluid Pumps serve a critical function in hydraulic and thermodynamic systems, and this often exposes them to prolonged use, leading to fatigue, stress, contamination, filter clogging, etc. On one hand, vibration monitoring for hydraulic components has shown reliable efficiencies in fault detection and isolation (FDI) practices. On the other hand, signal processing techniques provide reliable FDI parameters for artificial intelligence (AI)-based data-driven diagnostics (and prognostics) and have recently attracted global interest across different disciplines and applications. Particularly for cost-aware systems, the choice of diagnostic parameters determines the reliability of an FDI/diagnostic model. By extracting (and selecting) discriminative spectral and transient features from solenoid pump vibration signals, accurate diagnostics across operating conditions can be achieved using AI-based FDI algorithms. This study employs a deep neural network (DNN) for fault diagnosis after a correlation-based selection of discriminative spectral and transient features. To solve the problem of hyperparameter selection for the proposed model, a grid search technique was employed for optimal search for parameters (number of layers, neurons, activation function, weight optimizer, etc.) on different network architectures.The results reveal the high accuracy of a three-layer DNN with ReLU activation function, with a test accuracy of 99.23% and a minimal false alarm rate on a case study.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Computer architecture</subject><subject>Costs</subject><subject>Failure</subject><subject>False alarms</subject><subject>Fault detection</subject><subject>Fault diagnosis</subject><subject>Feature extraction</subject><subject>Feature selection</subject><subject>Mathematical models</subject><subject>Neural networks</subject><subject>Parameter identification</subject><subject>Parameters</subject><subject>Propagation</subject><subject>Pumps</subject><subject>Signal processing</subject><subject>Solenoids</subject><subject>Vibration monitoring</subject><subject>Wavelet transforms</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNptULFOwzAUtBBIVKVfwGKJ2WD7xYk9hpRCpaogUebIdhxIlcbBToT69wSVgYFb7obT3ekQumb0FkDRO9c6OwTfNTYyyhQHDmdoxmmmiOKKn__Rl2gR455OUAwk0BmSOS58HEj-pYPDy-2W3OvoKrxarvHO2Y_Ot_79iGsf8KtvXeebCr-Mhz5eoYtat9EtfnmO3lYPu-KJbJ4f10W-IRY4HwhX1gpgqbWuNi6TiYEkyWoQiXAcLFXGgFBSQpWairJpkzY6ERxSqlVmJMzRzSm3D_5zdHEo934M3VRZciGpyhgTYnLByWWDjzG4uuxDc9DhWDJa_rxU_vMSfAPEaVrO</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Kim, Suju</creator><creator>Akpudo, Ugochukwu Ejike</creator><creator>Hur, Jang-Wook</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0003-4221-5192</orcidid></search><sort><creationdate>20211001</creationdate><title>A Cost-Aware DNN-Based FDI Technology for Solenoid Pumps</title><author>Kim, Suju ; Akpudo, Ugochukwu Ejike ; Hur, Jang-Wook</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-29cc5316ccefbe784b3447f3545e23c09bb359883d6bd01830aba452360a97b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Computer architecture</topic><topic>Costs</topic><topic>Failure</topic><topic>False alarms</topic><topic>Fault detection</topic><topic>Fault diagnosis</topic><topic>Feature extraction</topic><topic>Feature selection</topic><topic>Mathematical models</topic><topic>Neural networks</topic><topic>Parameter identification</topic><topic>Parameters</topic><topic>Propagation</topic><topic>Pumps</topic><topic>Signal processing</topic><topic>Solenoids</topic><topic>Vibration monitoring</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Suju</creatorcontrib><creatorcontrib>Akpudo, Ugochukwu Ejike</creatorcontrib><creatorcontrib>Hur, Jang-Wook</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Suju</au><au>Akpudo, Ugochukwu Ejike</au><au>Hur, Jang-Wook</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Cost-Aware DNN-Based FDI Technology for Solenoid Pumps</atitle><jtitle>Electronics (Basel)</jtitle><date>2021-10-01</date><risdate>2021</risdate><volume>10</volume><issue>19</issue><spage>2323</spage><pages>2323-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>Fluid Pumps serve a critical function in hydraulic and thermodynamic systems, and this often exposes them to prolonged use, leading to fatigue, stress, contamination, filter clogging, etc. On one hand, vibration monitoring for hydraulic components has shown reliable efficiencies in fault detection and isolation (FDI) practices. On the other hand, signal processing techniques provide reliable FDI parameters for artificial intelligence (AI)-based data-driven diagnostics (and prognostics) and have recently attracted global interest across different disciplines and applications. Particularly for cost-aware systems, the choice of diagnostic parameters determines the reliability of an FDI/diagnostic model. By extracting (and selecting) discriminative spectral and transient features from solenoid pump vibration signals, accurate diagnostics across operating conditions can be achieved using AI-based FDI algorithms. This study employs a deep neural network (DNN) for fault diagnosis after a correlation-based selection of discriminative spectral and transient features. To solve the problem of hyperparameter selection for the proposed model, a grid search technique was employed for optimal search for parameters (number of layers, neurons, activation function, weight optimizer, etc.) on different network architectures.The results reveal the high accuracy of a three-layer DNN with ReLU activation function, with a test accuracy of 99.23% and a minimal false alarm rate on a case study.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics10192323</doi><orcidid>https://orcid.org/0000-0003-4221-5192</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-9292 |
ispartof | Electronics (Basel), 2021-10, Vol.10 (19), p.2323 |
issn | 2079-9292 2079-9292 |
language | eng |
recordid | cdi_proquest_journals_2580971155 |
source | MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals |
subjects | Algorithms Artificial intelligence Artificial neural networks Computer architecture Costs Failure False alarms Fault detection Fault diagnosis Feature extraction Feature selection Mathematical models Neural networks Parameter identification Parameters Propagation Pumps Signal processing Solenoids Vibration monitoring Wavelet transforms |
title | A Cost-Aware DNN-Based FDI Technology for Solenoid Pumps |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T06%3A19%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Cost-Aware%20DNN-Based%20FDI%20Technology%20for%20Solenoid%20Pumps&rft.jtitle=Electronics%20(Basel)&rft.au=Kim,%20Suju&rft.date=2021-10-01&rft.volume=10&rft.issue=19&rft.spage=2323&rft.pages=2323-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics10192323&rft_dat=%3Cproquest_cross%3E2580971155%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2580971155&rft_id=info:pmid/&rfr_iscdi=true |