A Cost-Aware DNN-Based FDI Technology for Solenoid Pumps

Fluid Pumps serve a critical function in hydraulic and thermodynamic systems, and this often exposes them to prolonged use, leading to fatigue, stress, contamination, filter clogging, etc. On one hand, vibration monitoring for hydraulic components has shown reliable efficiencies in fault detection a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics (Basel) 2021-10, Vol.10 (19), p.2323
Hauptverfasser: Kim, Suju, Akpudo, Ugochukwu Ejike, Hur, Jang-Wook
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 19
container_start_page 2323
container_title Electronics (Basel)
container_volume 10
creator Kim, Suju
Akpudo, Ugochukwu Ejike
Hur, Jang-Wook
description Fluid Pumps serve a critical function in hydraulic and thermodynamic systems, and this often exposes them to prolonged use, leading to fatigue, stress, contamination, filter clogging, etc. On one hand, vibration monitoring for hydraulic components has shown reliable efficiencies in fault detection and isolation (FDI) practices. On the other hand, signal processing techniques provide reliable FDI parameters for artificial intelligence (AI)-based data-driven diagnostics (and prognostics) and have recently attracted global interest across different disciplines and applications. Particularly for cost-aware systems, the choice of diagnostic parameters determines the reliability of an FDI/diagnostic model. By extracting (and selecting) discriminative spectral and transient features from solenoid pump vibration signals, accurate diagnostics across operating conditions can be achieved using AI-based FDI algorithms. This study employs a deep neural network (DNN) for fault diagnosis after a correlation-based selection of discriminative spectral and transient features. To solve the problem of hyperparameter selection for the proposed model, a grid search technique was employed for optimal search for parameters (number of layers, neurons, activation function, weight optimizer, etc.) on different network architectures.The results reveal the high accuracy of a three-layer DNN with ReLU activation function, with a test accuracy of 99.23% and a minimal false alarm rate on a case study.
doi_str_mv 10.3390/electronics10192323
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2580971155</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2580971155</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-29cc5316ccefbe784b3447f3545e23c09bb359883d6bd01830aba452360a97b83</originalsourceid><addsrcrecordid>eNptULFOwzAUtBBIVKVfwGKJ2WD7xYk9hpRCpaogUebIdhxIlcbBToT69wSVgYFb7obT3ekQumb0FkDRO9c6OwTfNTYyyhQHDmdoxmmmiOKKn__Rl2gR455OUAwk0BmSOS58HEj-pYPDy-2W3OvoKrxarvHO2Y_Ot_79iGsf8KtvXeebCr-Mhz5eoYtat9EtfnmO3lYPu-KJbJ4f10W-IRY4HwhX1gpgqbWuNi6TiYEkyWoQiXAcLFXGgFBSQpWairJpkzY6ERxSqlVmJMzRzSm3D_5zdHEo934M3VRZciGpyhgTYnLByWWDjzG4uuxDc9DhWDJa_rxU_vMSfAPEaVrO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2580971155</pqid></control><display><type>article</type><title>A Cost-Aware DNN-Based FDI Technology for Solenoid Pumps</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Kim, Suju ; Akpudo, Ugochukwu Ejike ; Hur, Jang-Wook</creator><creatorcontrib>Kim, Suju ; Akpudo, Ugochukwu Ejike ; Hur, Jang-Wook</creatorcontrib><description>Fluid Pumps serve a critical function in hydraulic and thermodynamic systems, and this often exposes them to prolonged use, leading to fatigue, stress, contamination, filter clogging, etc. On one hand, vibration monitoring for hydraulic components has shown reliable efficiencies in fault detection and isolation (FDI) practices. On the other hand, signal processing techniques provide reliable FDI parameters for artificial intelligence (AI)-based data-driven diagnostics (and prognostics) and have recently attracted global interest across different disciplines and applications. Particularly for cost-aware systems, the choice of diagnostic parameters determines the reliability of an FDI/diagnostic model. By extracting (and selecting) discriminative spectral and transient features from solenoid pump vibration signals, accurate diagnostics across operating conditions can be achieved using AI-based FDI algorithms. This study employs a deep neural network (DNN) for fault diagnosis after a correlation-based selection of discriminative spectral and transient features. To solve the problem of hyperparameter selection for the proposed model, a grid search technique was employed for optimal search for parameters (number of layers, neurons, activation function, weight optimizer, etc.) on different network architectures.The results reveal the high accuracy of a three-layer DNN with ReLU activation function, with a test accuracy of 99.23% and a minimal false alarm rate on a case study.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics10192323</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Artificial intelligence ; Artificial neural networks ; Computer architecture ; Costs ; Failure ; False alarms ; Fault detection ; Fault diagnosis ; Feature extraction ; Feature selection ; Mathematical models ; Neural networks ; Parameter identification ; Parameters ; Propagation ; Pumps ; Signal processing ; Solenoids ; Vibration monitoring ; Wavelet transforms</subject><ispartof>Electronics (Basel), 2021-10, Vol.10 (19), p.2323</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-29cc5316ccefbe784b3447f3545e23c09bb359883d6bd01830aba452360a97b83</citedby><cites>FETCH-LOGICAL-c322t-29cc5316ccefbe784b3447f3545e23c09bb359883d6bd01830aba452360a97b83</cites><orcidid>0000-0003-4221-5192</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids></links><search><creatorcontrib>Kim, Suju</creatorcontrib><creatorcontrib>Akpudo, Ugochukwu Ejike</creatorcontrib><creatorcontrib>Hur, Jang-Wook</creatorcontrib><title>A Cost-Aware DNN-Based FDI Technology for Solenoid Pumps</title><title>Electronics (Basel)</title><description>Fluid Pumps serve a critical function in hydraulic and thermodynamic systems, and this often exposes them to prolonged use, leading to fatigue, stress, contamination, filter clogging, etc. On one hand, vibration monitoring for hydraulic components has shown reliable efficiencies in fault detection and isolation (FDI) practices. On the other hand, signal processing techniques provide reliable FDI parameters for artificial intelligence (AI)-based data-driven diagnostics (and prognostics) and have recently attracted global interest across different disciplines and applications. Particularly for cost-aware systems, the choice of diagnostic parameters determines the reliability of an FDI/diagnostic model. By extracting (and selecting) discriminative spectral and transient features from solenoid pump vibration signals, accurate diagnostics across operating conditions can be achieved using AI-based FDI algorithms. This study employs a deep neural network (DNN) for fault diagnosis after a correlation-based selection of discriminative spectral and transient features. To solve the problem of hyperparameter selection for the proposed model, a grid search technique was employed for optimal search for parameters (number of layers, neurons, activation function, weight optimizer, etc.) on different network architectures.The results reveal the high accuracy of a three-layer DNN with ReLU activation function, with a test accuracy of 99.23% and a minimal false alarm rate on a case study.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Computer architecture</subject><subject>Costs</subject><subject>Failure</subject><subject>False alarms</subject><subject>Fault detection</subject><subject>Fault diagnosis</subject><subject>Feature extraction</subject><subject>Feature selection</subject><subject>Mathematical models</subject><subject>Neural networks</subject><subject>Parameter identification</subject><subject>Parameters</subject><subject>Propagation</subject><subject>Pumps</subject><subject>Signal processing</subject><subject>Solenoids</subject><subject>Vibration monitoring</subject><subject>Wavelet transforms</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNptULFOwzAUtBBIVKVfwGKJ2WD7xYk9hpRCpaogUebIdhxIlcbBToT69wSVgYFb7obT3ekQumb0FkDRO9c6OwTfNTYyyhQHDmdoxmmmiOKKn__Rl2gR455OUAwk0BmSOS58HEj-pYPDy-2W3OvoKrxarvHO2Y_Ot_79iGsf8KtvXeebCr-Mhz5eoYtat9EtfnmO3lYPu-KJbJ4f10W-IRY4HwhX1gpgqbWuNi6TiYEkyWoQiXAcLFXGgFBSQpWairJpkzY6ERxSqlVmJMzRzSm3D_5zdHEo934M3VRZciGpyhgTYnLByWWDjzG4uuxDc9DhWDJa_rxU_vMSfAPEaVrO</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Kim, Suju</creator><creator>Akpudo, Ugochukwu Ejike</creator><creator>Hur, Jang-Wook</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0003-4221-5192</orcidid></search><sort><creationdate>20211001</creationdate><title>A Cost-Aware DNN-Based FDI Technology for Solenoid Pumps</title><author>Kim, Suju ; Akpudo, Ugochukwu Ejike ; Hur, Jang-Wook</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-29cc5316ccefbe784b3447f3545e23c09bb359883d6bd01830aba452360a97b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Computer architecture</topic><topic>Costs</topic><topic>Failure</topic><topic>False alarms</topic><topic>Fault detection</topic><topic>Fault diagnosis</topic><topic>Feature extraction</topic><topic>Feature selection</topic><topic>Mathematical models</topic><topic>Neural networks</topic><topic>Parameter identification</topic><topic>Parameters</topic><topic>Propagation</topic><topic>Pumps</topic><topic>Signal processing</topic><topic>Solenoids</topic><topic>Vibration monitoring</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Suju</creatorcontrib><creatorcontrib>Akpudo, Ugochukwu Ejike</creatorcontrib><creatorcontrib>Hur, Jang-Wook</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Suju</au><au>Akpudo, Ugochukwu Ejike</au><au>Hur, Jang-Wook</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Cost-Aware DNN-Based FDI Technology for Solenoid Pumps</atitle><jtitle>Electronics (Basel)</jtitle><date>2021-10-01</date><risdate>2021</risdate><volume>10</volume><issue>19</issue><spage>2323</spage><pages>2323-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>Fluid Pumps serve a critical function in hydraulic and thermodynamic systems, and this often exposes them to prolonged use, leading to fatigue, stress, contamination, filter clogging, etc. On one hand, vibration monitoring for hydraulic components has shown reliable efficiencies in fault detection and isolation (FDI) practices. On the other hand, signal processing techniques provide reliable FDI parameters for artificial intelligence (AI)-based data-driven diagnostics (and prognostics) and have recently attracted global interest across different disciplines and applications. Particularly for cost-aware systems, the choice of diagnostic parameters determines the reliability of an FDI/diagnostic model. By extracting (and selecting) discriminative spectral and transient features from solenoid pump vibration signals, accurate diagnostics across operating conditions can be achieved using AI-based FDI algorithms. This study employs a deep neural network (DNN) for fault diagnosis after a correlation-based selection of discriminative spectral and transient features. To solve the problem of hyperparameter selection for the proposed model, a grid search technique was employed for optimal search for parameters (number of layers, neurons, activation function, weight optimizer, etc.) on different network architectures.The results reveal the high accuracy of a three-layer DNN with ReLU activation function, with a test accuracy of 99.23% and a minimal false alarm rate on a case study.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics10192323</doi><orcidid>https://orcid.org/0000-0003-4221-5192</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2079-9292
ispartof Electronics (Basel), 2021-10, Vol.10 (19), p.2323
issn 2079-9292
2079-9292
language eng
recordid cdi_proquest_journals_2580971155
source MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals
subjects Algorithms
Artificial intelligence
Artificial neural networks
Computer architecture
Costs
Failure
False alarms
Fault detection
Fault diagnosis
Feature extraction
Feature selection
Mathematical models
Neural networks
Parameter identification
Parameters
Propagation
Pumps
Signal processing
Solenoids
Vibration monitoring
Wavelet transforms
title A Cost-Aware DNN-Based FDI Technology for Solenoid Pumps
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T06%3A19%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Cost-Aware%20DNN-Based%20FDI%20Technology%20for%20Solenoid%20Pumps&rft.jtitle=Electronics%20(Basel)&rft.au=Kim,%20Suju&rft.date=2021-10-01&rft.volume=10&rft.issue=19&rft.spage=2323&rft.pages=2323-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics10192323&rft_dat=%3Cproquest_cross%3E2580971155%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2580971155&rft_id=info:pmid/&rfr_iscdi=true