High thermal energy storage and thermal conductivity of few‐layer graphene platelets loaded phase change materials: A thermally conductive additive for thermal energy harvesting

3D‐structured graphite efficiently converted into 2D‐structured few‐layer graphene platelets (FGP) through sequentially controlled top‐down approach by adopting 2‐stage exfoliation. A process of solvent‐phase exfoliation with turbulence energy cascade‐dominated complex fluid dynamics‐assisted vertic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy storage (Hoboken, N.J. : 2019) N.J. : 2019), 2021-02, Vol.3 (1), p.n/a
Hauptverfasser: Padya, Balaji, Ravikiran, N., Kali, Ravi, Narasaiah, N., Jain, P. K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 1
container_start_page
container_title Energy storage (Hoboken, N.J. : 2019)
container_volume 3
creator Padya, Balaji
Ravikiran, N.
Kali, Ravi
Narasaiah, N.
Jain, P. K.
description 3D‐structured graphite efficiently converted into 2D‐structured few‐layer graphene platelets (FGP) through sequentially controlled top‐down approach by adopting 2‐stage exfoliation. A process of solvent‐phase exfoliation with turbulence energy cascade‐dominated complex fluid dynamics‐assisted vertical diffusion was deployed to agitate the particle to disperse them in a solvent with turbulence to delaminate the layered‐material into thin sheet‐like structured FGP consist of 3 to 10 layers. The underlying critical mechanism involved in fragmentation and delamination to FGP was proposed. The enhancement in thermal conductivity of FGP loaded myristic acid found to be around 32.14%, 171.42% and 383.5% for 1, 3 and 5 wt% of FGP, respectively. Thermal conductivity of phase change materials composites increased with increase in FGP loading and decreased with increase in temperature. A phenomenon of a decrease in latent heat and phase transition temperature with increase in FGP loading was observed. The layers‐engineered 2D‐structured few‐layer graphene platelets (FGP) were produced from two‐stage exfoliated graphite via solvent‐phase (co‐solvent) exfoliation with turbulence energy cascade‐dominated complex fluid dynamics‐assisted vertical diffusion. FGP loaded myristic acid‐based phase change materials (PCM) composite exhibited enhancement in thermal conductivity by 383.5% with decrease in latent heat by 2.5% lesser to pure PCM for loading of 5 wt%.
doi_str_mv 10.1002/est2.199
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2580907174</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2580907174</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2579-662fccd2ad8aedb5d2950c55baad52ea1638dbaa0ce56116ae3e78de684692d13</originalsourceid><addsrcrecordid>eNp1kU1OwzAQhSMEElWpxBEssWGTYruxk7CrqkKRKrGgrKOpPfmp0iTYaavsOAJ34UacBJfyJyRWHmu-eW9Gz_POGR0ySvkV2pYPWRwfeT0uwsgPIsmPf9Wn3sDaFXUoC2LJRc97nRVZTtoczRpKghWarCO2rQ1kSKDS3y1VV3qj2mJbtB2pU5Li7u35pYQODckMNLmbJU0JLZbYWlLWoFGTJgeLROVQObm1a5oCSntNxl-6Zfej7Ay1Lj6KtDZ_l8rBbN19RZWdeSepU8HB59v3Hm-mi8nMn9_f3k3Gc1-5g2NfSp4qpTnoCFAvheaxoEqIJYAWHIHJUaTdhyoUkjEJOMIw0iijQMZcs1HfuzjoNqZ-2jjvZFVvTOUsEy4iGtOQhYGjLg-UMrW1BtOkMcUaTJcwmuxTSfapJC4Vh_oHdFeU2P3LJdOHBd_z7yARlI0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2580907174</pqid></control><display><type>article</type><title>High thermal energy storage and thermal conductivity of few‐layer graphene platelets loaded phase change materials: A thermally conductive additive for thermal energy harvesting</title><source>Wiley Online Library All Journals</source><creator>Padya, Balaji ; Ravikiran, N. ; Kali, Ravi ; Narasaiah, N. ; Jain, P. K.</creator><creatorcontrib>Padya, Balaji ; Ravikiran, N. ; Kali, Ravi ; Narasaiah, N. ; Jain, P. K.</creatorcontrib><description>3D‐structured graphite efficiently converted into 2D‐structured few‐layer graphene platelets (FGP) through sequentially controlled top‐down approach by adopting 2‐stage exfoliation. A process of solvent‐phase exfoliation with turbulence energy cascade‐dominated complex fluid dynamics‐assisted vertical diffusion was deployed to agitate the particle to disperse them in a solvent with turbulence to delaminate the layered‐material into thin sheet‐like structured FGP consist of 3 to 10 layers. The underlying critical mechanism involved in fragmentation and delamination to FGP was proposed. The enhancement in thermal conductivity of FGP loaded myristic acid found to be around 32.14%, 171.42% and 383.5% for 1, 3 and 5 wt% of FGP, respectively. Thermal conductivity of phase change materials composites increased with increase in FGP loading and decreased with increase in temperature. A phenomenon of a decrease in latent heat and phase transition temperature with increase in FGP loading was observed. The layers‐engineered 2D‐structured few‐layer graphene platelets (FGP) were produced from two‐stage exfoliated graphite via solvent‐phase (co‐solvent) exfoliation with turbulence energy cascade‐dominated complex fluid dynamics‐assisted vertical diffusion. FGP loaded myristic acid‐based phase change materials (PCM) composite exhibited enhancement in thermal conductivity by 383.5% with decrease in latent heat by 2.5% lesser to pure PCM for loading of 5 wt%.</description><identifier>ISSN: 2578-4862</identifier><identifier>EISSN: 2578-4862</identifier><identifier>DOI: 10.1002/est2.199</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Energy harvesting ; Energy storage ; Exfoliation ; few‐layer graphene platelets ; Fluid dynamics ; Fluid flow ; Graphene ; Heat conductivity ; Heat transfer ; Latent heat ; Phase change materials ; Phase transitions ; Platelets (materials) ; Solvents ; solvent‐phase exfoliation ; Thermal conductivity ; Thermal energy ; Transition temperature ; Turbulence ; vertical diffusion</subject><ispartof>Energy storage (Hoboken, N.J. : 2019), 2021-02, Vol.3 (1), p.n/a</ispartof><rights>2020 John Wiley &amp; Sons Ltd</rights><rights>2021 John Wiley &amp; Sons Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2579-662fccd2ad8aedb5d2950c55baad52ea1638dbaa0ce56116ae3e78de684692d13</citedby><cites>FETCH-LOGICAL-c2579-662fccd2ad8aedb5d2950c55baad52ea1638dbaa0ce56116ae3e78de684692d13</cites><orcidid>0000-0001-9124-9466</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fest2.199$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fest2.199$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Padya, Balaji</creatorcontrib><creatorcontrib>Ravikiran, N.</creatorcontrib><creatorcontrib>Kali, Ravi</creatorcontrib><creatorcontrib>Narasaiah, N.</creatorcontrib><creatorcontrib>Jain, P. K.</creatorcontrib><title>High thermal energy storage and thermal conductivity of few‐layer graphene platelets loaded phase change materials: A thermally conductive additive for thermal energy harvesting</title><title>Energy storage (Hoboken, N.J. : 2019)</title><description>3D‐structured graphite efficiently converted into 2D‐structured few‐layer graphene platelets (FGP) through sequentially controlled top‐down approach by adopting 2‐stage exfoliation. A process of solvent‐phase exfoliation with turbulence energy cascade‐dominated complex fluid dynamics‐assisted vertical diffusion was deployed to agitate the particle to disperse them in a solvent with turbulence to delaminate the layered‐material into thin sheet‐like structured FGP consist of 3 to 10 layers. The underlying critical mechanism involved in fragmentation and delamination to FGP was proposed. The enhancement in thermal conductivity of FGP loaded myristic acid found to be around 32.14%, 171.42% and 383.5% for 1, 3 and 5 wt% of FGP, respectively. Thermal conductivity of phase change materials composites increased with increase in FGP loading and decreased with increase in temperature. A phenomenon of a decrease in latent heat and phase transition temperature with increase in FGP loading was observed. The layers‐engineered 2D‐structured few‐layer graphene platelets (FGP) were produced from two‐stage exfoliated graphite via solvent‐phase (co‐solvent) exfoliation with turbulence energy cascade‐dominated complex fluid dynamics‐assisted vertical diffusion. FGP loaded myristic acid‐based phase change materials (PCM) composite exhibited enhancement in thermal conductivity by 383.5% with decrease in latent heat by 2.5% lesser to pure PCM for loading of 5 wt%.</description><subject>Energy harvesting</subject><subject>Energy storage</subject><subject>Exfoliation</subject><subject>few‐layer graphene platelets</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Graphene</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>Latent heat</subject><subject>Phase change materials</subject><subject>Phase transitions</subject><subject>Platelets (materials)</subject><subject>Solvents</subject><subject>solvent‐phase exfoliation</subject><subject>Thermal conductivity</subject><subject>Thermal energy</subject><subject>Transition temperature</subject><subject>Turbulence</subject><subject>vertical diffusion</subject><issn>2578-4862</issn><issn>2578-4862</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kU1OwzAQhSMEElWpxBEssWGTYruxk7CrqkKRKrGgrKOpPfmp0iTYaavsOAJ34UacBJfyJyRWHmu-eW9Gz_POGR0ySvkV2pYPWRwfeT0uwsgPIsmPf9Wn3sDaFXUoC2LJRc97nRVZTtoczRpKghWarCO2rQ1kSKDS3y1VV3qj2mJbtB2pU5Li7u35pYQODckMNLmbJU0JLZbYWlLWoFGTJgeLROVQObm1a5oCSntNxl-6Zfej7Ay1Lj6KtDZ_l8rBbN19RZWdeSepU8HB59v3Hm-mi8nMn9_f3k3Gc1-5g2NfSp4qpTnoCFAvheaxoEqIJYAWHIHJUaTdhyoUkjEJOMIw0iijQMZcs1HfuzjoNqZ-2jjvZFVvTOUsEy4iGtOQhYGjLg-UMrW1BtOkMcUaTJcwmuxTSfapJC4Vh_oHdFeU2P3LJdOHBd_z7yARlI0</recordid><startdate>202102</startdate><enddate>202102</enddate><creator>Padya, Balaji</creator><creator>Ravikiran, N.</creator><creator>Kali, Ravi</creator><creator>Narasaiah, N.</creator><creator>Jain, P. K.</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TC</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0001-9124-9466</orcidid></search><sort><creationdate>202102</creationdate><title>High thermal energy storage and thermal conductivity of few‐layer graphene platelets loaded phase change materials: A thermally conductive additive for thermal energy harvesting</title><author>Padya, Balaji ; Ravikiran, N. ; Kali, Ravi ; Narasaiah, N. ; Jain, P. K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2579-662fccd2ad8aedb5d2950c55baad52ea1638dbaa0ce56116ae3e78de684692d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Energy harvesting</topic><topic>Energy storage</topic><topic>Exfoliation</topic><topic>few‐layer graphene platelets</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Graphene</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>Latent heat</topic><topic>Phase change materials</topic><topic>Phase transitions</topic><topic>Platelets (materials)</topic><topic>Solvents</topic><topic>solvent‐phase exfoliation</topic><topic>Thermal conductivity</topic><topic>Thermal energy</topic><topic>Transition temperature</topic><topic>Turbulence</topic><topic>vertical diffusion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Padya, Balaji</creatorcontrib><creatorcontrib>Ravikiran, N.</creatorcontrib><creatorcontrib>Kali, Ravi</creatorcontrib><creatorcontrib>Narasaiah, N.</creatorcontrib><creatorcontrib>Jain, P. K.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><jtitle>Energy storage (Hoboken, N.J. : 2019)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Padya, Balaji</au><au>Ravikiran, N.</au><au>Kali, Ravi</au><au>Narasaiah, N.</au><au>Jain, P. K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High thermal energy storage and thermal conductivity of few‐layer graphene platelets loaded phase change materials: A thermally conductive additive for thermal energy harvesting</atitle><jtitle>Energy storage (Hoboken, N.J. : 2019)</jtitle><date>2021-02</date><risdate>2021</risdate><volume>3</volume><issue>1</issue><epage>n/a</epage><issn>2578-4862</issn><eissn>2578-4862</eissn><abstract>3D‐structured graphite efficiently converted into 2D‐structured few‐layer graphene platelets (FGP) through sequentially controlled top‐down approach by adopting 2‐stage exfoliation. A process of solvent‐phase exfoliation with turbulence energy cascade‐dominated complex fluid dynamics‐assisted vertical diffusion was deployed to agitate the particle to disperse them in a solvent with turbulence to delaminate the layered‐material into thin sheet‐like structured FGP consist of 3 to 10 layers. The underlying critical mechanism involved in fragmentation and delamination to FGP was proposed. The enhancement in thermal conductivity of FGP loaded myristic acid found to be around 32.14%, 171.42% and 383.5% for 1, 3 and 5 wt% of FGP, respectively. Thermal conductivity of phase change materials composites increased with increase in FGP loading and decreased with increase in temperature. A phenomenon of a decrease in latent heat and phase transition temperature with increase in FGP loading was observed. The layers‐engineered 2D‐structured few‐layer graphene platelets (FGP) were produced from two‐stage exfoliated graphite via solvent‐phase (co‐solvent) exfoliation with turbulence energy cascade‐dominated complex fluid dynamics‐assisted vertical diffusion. FGP loaded myristic acid‐based phase change materials (PCM) composite exhibited enhancement in thermal conductivity by 383.5% with decrease in latent heat by 2.5% lesser to pure PCM for loading of 5 wt%.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/est2.199</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-9124-9466</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2578-4862
ispartof Energy storage (Hoboken, N.J. : 2019), 2021-02, Vol.3 (1), p.n/a
issn 2578-4862
2578-4862
language eng
recordid cdi_proquest_journals_2580907174
source Wiley Online Library All Journals
subjects Energy harvesting
Energy storage
Exfoliation
few‐layer graphene platelets
Fluid dynamics
Fluid flow
Graphene
Heat conductivity
Heat transfer
Latent heat
Phase change materials
Phase transitions
Platelets (materials)
Solvents
solvent‐phase exfoliation
Thermal conductivity
Thermal energy
Transition temperature
Turbulence
vertical diffusion
title High thermal energy storage and thermal conductivity of few‐layer graphene platelets loaded phase change materials: A thermally conductive additive for thermal energy harvesting
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T16%3A42%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20thermal%20energy%20storage%20and%20thermal%20conductivity%20of%20few%E2%80%90layer%20graphene%20platelets%20loaded%20phase%20change%20materials:%20A%20thermally%20conductive%20additive%20for%20thermal%20energy%20harvesting&rft.jtitle=Energy%20storage%20(Hoboken,%20N.J.%20:%202019)&rft.au=Padya,%20Balaji&rft.date=2021-02&rft.volume=3&rft.issue=1&rft.epage=n/a&rft.issn=2578-4862&rft.eissn=2578-4862&rft_id=info:doi/10.1002/est2.199&rft_dat=%3Cproquest_cross%3E2580907174%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2580907174&rft_id=info:pmid/&rfr_iscdi=true