Fine-scale variation in microhabitat conditions influences physiology and metabolism in an Antarctic insect

Microhabitats with distinct biotic and abiotic properties exist within landscapes, and this microhabitat variation can have dramatic impacts on the phenology and physiology of the organisms occupying them. The Antarctic midge Belgica antarctica inhabits diverse microhabitats along the Western Antarc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Oecologia 2021-10, Vol.197 (2), p.373-385
Hauptverfasser: Spacht, Drew E., Gantz, J. D., Devlin, Jack J., McCabe, Eleanor A., Lee, Richard E., Denlinger, David L., Teets, Nicholas M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 385
container_issue 2
container_start_page 373
container_title Oecologia
container_volume 197
creator Spacht, Drew E.
Gantz, J. D.
Devlin, Jack J.
McCabe, Eleanor A.
Lee, Richard E.
Denlinger, David L.
Teets, Nicholas M.
description Microhabitats with distinct biotic and abiotic properties exist within landscapes, and this microhabitat variation can have dramatic impacts on the phenology and physiology of the organisms occupying them. The Antarctic midge Belgica antarctica inhabits diverse microhabitats along the Western Antarctic Peninsula that vary in macrophyte composition, hygric qualities, nutrient input, and thermal patterns. Here, we compare seasonal physiological changes in five populations of B. antarctica living in close proximity but in different microhabitats in the vicinity of Palmer Station, Antarctica. Thermal regimes among our sample locations differed in both mean temperature and thermal stability. Between the warmest and coldest sites, seasonal mean temperatures differed by 2.6˚C and degree day accumulations above freezing differed by a factor of 1.7. Larval metabolic and growth rates varied among the sites, and adult emergence occurred at different times. Distinct microhabitats also corresponded with differences in body composition, as lipid and carbohydrate content of larvae differed across sites. Further, seasonal changes in carbohydrate and protein content were dependent on site, indicating fine-scale variation in the biochemical composition of larvae as they prepare for winter. Together, these results demonstrate that variation in microhabitat properties influences the ontogeny, phenology, physiology, and biochemical makeup of midge populations living in close proximity. These results have implications for predicting responses of Antarctic ecosystems to environmental change.
doi_str_mv 10.1007/s00442-021-05035-1
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2580827194</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A678748937</galeid><sourcerecordid>A678748937</sourcerecordid><originalsourceid>FETCH-LOGICAL-c497t-f6b6ed6ab082efbc8e094a8df6d4ebc6c5628abf5372b346b8cfcd6d89f0183a3</originalsourceid><addsrcrecordid>eNp9kU1rXCEUhqW00GnaP9DVhay6cOLX9epyCM0HBAJNuhb16sT0Xp2oEzL_Pk6nEAZCcSF6nvcc3vMC8B2jJUZoOCsIMUYgIhiiHtEe4g9ggRklEEsqP4IFQkRC0TP5GXwp5REhzHDfL8CfixAdLFZPrnvWOegaUuxC7OZgc3rQJlRdO5viGPaV0kp-2rpoXek2D7sS0pTWu07HsZtd1SZNocx7vY7dKladbQ22vYuz9Sv45PVU3Ld_9wn4ffHz_vwK3txeXp-vbqBlcqjQc8PdyLVBgjhvrHBIMi1Gz0fmjOW250Ro43s6EEMZN8J6O_JRSI-woJqegNND301OT1tXqnpM2xzbSEV60boOWLI3at28q2Yr1aztHIpVKz6IgQlJh0Yt36HaGV3bUIrOh_Z_JPhxJGhMdS91rbelqOu7X8csObBt1aVk59Umh1nnncJI7XNVh1xVy1X9zVXhJqIHUWlwXLv85u4_qld6K6Yk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2580827194</pqid></control><display><type>article</type><title>Fine-scale variation in microhabitat conditions influences physiology and metabolism in an Antarctic insect</title><source>SpringerLink Journals</source><creator>Spacht, Drew E. ; Gantz, J. D. ; Devlin, Jack J. ; McCabe, Eleanor A. ; Lee, Richard E. ; Denlinger, David L. ; Teets, Nicholas M.</creator><creatorcontrib>Spacht, Drew E. ; Gantz, J. D. ; Devlin, Jack J. ; McCabe, Eleanor A. ; Lee, Richard E. ; Denlinger, David L. ; Teets, Nicholas M.</creatorcontrib><description>Microhabitats with distinct biotic and abiotic properties exist within landscapes, and this microhabitat variation can have dramatic impacts on the phenology and physiology of the organisms occupying them. The Antarctic midge Belgica antarctica inhabits diverse microhabitats along the Western Antarctic Peninsula that vary in macrophyte composition, hygric qualities, nutrient input, and thermal patterns. Here, we compare seasonal physiological changes in five populations of B. antarctica living in close proximity but in different microhabitats in the vicinity of Palmer Station, Antarctica. Thermal regimes among our sample locations differed in both mean temperature and thermal stability. Between the warmest and coldest sites, seasonal mean temperatures differed by 2.6˚C and degree day accumulations above freezing differed by a factor of 1.7. Larval metabolic and growth rates varied among the sites, and adult emergence occurred at different times. Distinct microhabitats also corresponded with differences in body composition, as lipid and carbohydrate content of larvae differed across sites. Further, seasonal changes in carbohydrate and protein content were dependent on site, indicating fine-scale variation in the biochemical composition of larvae as they prepare for winter. Together, these results demonstrate that variation in microhabitat properties influences the ontogeny, phenology, physiology, and biochemical makeup of midge populations living in close proximity. These results have implications for predicting responses of Antarctic ecosystems to environmental change.</description><identifier>ISSN: 0029-8549</identifier><identifier>EISSN: 1432-1939</identifier><identifier>DOI: 10.1007/s00442-021-05035-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Aquatic plants ; Biochemical composition ; Biomedical and Life Sciences ; Body composition ; Carbohydrates ; Composition ; Ecological distribution ; Ecology ; Ecosystems ; Environmental changes ; Freezing ; Growth rate ; Habitats ; Hydrology/Water Resources ; Insects ; Larvae ; Life Sciences ; Lipids ; Metabolism ; Microenvironments ; Microhabitat ; Microhabitats ; Nutrient content ; Ontogeny ; Phenology ; Physiological aspects ; Physiological Ecology–Original Research ; Physiology ; Plant Sciences ; Populations ; Properties ; Seasonal variation ; Seasonal variations ; Thermal stability</subject><ispartof>Oecologia, 2021-10, Vol.197 (2), p.373-385</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c497t-f6b6ed6ab082efbc8e094a8df6d4ebc6c5628abf5372b346b8cfcd6d89f0183a3</citedby><cites>FETCH-LOGICAL-c497t-f6b6ed6ab082efbc8e094a8df6d4ebc6c5628abf5372b346b8cfcd6d89f0183a3</cites><orcidid>0000-0002-3651-114X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00442-021-05035-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00442-021-05035-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Spacht, Drew E.</creatorcontrib><creatorcontrib>Gantz, J. D.</creatorcontrib><creatorcontrib>Devlin, Jack J.</creatorcontrib><creatorcontrib>McCabe, Eleanor A.</creatorcontrib><creatorcontrib>Lee, Richard E.</creatorcontrib><creatorcontrib>Denlinger, David L.</creatorcontrib><creatorcontrib>Teets, Nicholas M.</creatorcontrib><title>Fine-scale variation in microhabitat conditions influences physiology and metabolism in an Antarctic insect</title><title>Oecologia</title><addtitle>Oecologia</addtitle><description>Microhabitats with distinct biotic and abiotic properties exist within landscapes, and this microhabitat variation can have dramatic impacts on the phenology and physiology of the organisms occupying them. The Antarctic midge Belgica antarctica inhabits diverse microhabitats along the Western Antarctic Peninsula that vary in macrophyte composition, hygric qualities, nutrient input, and thermal patterns. Here, we compare seasonal physiological changes in five populations of B. antarctica living in close proximity but in different microhabitats in the vicinity of Palmer Station, Antarctica. Thermal regimes among our sample locations differed in both mean temperature and thermal stability. Between the warmest and coldest sites, seasonal mean temperatures differed by 2.6˚C and degree day accumulations above freezing differed by a factor of 1.7. Larval metabolic and growth rates varied among the sites, and adult emergence occurred at different times. Distinct microhabitats also corresponded with differences in body composition, as lipid and carbohydrate content of larvae differed across sites. Further, seasonal changes in carbohydrate and protein content were dependent on site, indicating fine-scale variation in the biochemical composition of larvae as they prepare for winter. Together, these results demonstrate that variation in microhabitat properties influences the ontogeny, phenology, physiology, and biochemical makeup of midge populations living in close proximity. These results have implications for predicting responses of Antarctic ecosystems to environmental change.</description><subject>Aquatic plants</subject><subject>Biochemical composition</subject><subject>Biomedical and Life Sciences</subject><subject>Body composition</subject><subject>Carbohydrates</subject><subject>Composition</subject><subject>Ecological distribution</subject><subject>Ecology</subject><subject>Ecosystems</subject><subject>Environmental changes</subject><subject>Freezing</subject><subject>Growth rate</subject><subject>Habitats</subject><subject>Hydrology/Water Resources</subject><subject>Insects</subject><subject>Larvae</subject><subject>Life Sciences</subject><subject>Lipids</subject><subject>Metabolism</subject><subject>Microenvironments</subject><subject>Microhabitat</subject><subject>Microhabitats</subject><subject>Nutrient content</subject><subject>Ontogeny</subject><subject>Phenology</subject><subject>Physiological aspects</subject><subject>Physiological Ecology–Original Research</subject><subject>Physiology</subject><subject>Plant Sciences</subject><subject>Populations</subject><subject>Properties</subject><subject>Seasonal variation</subject><subject>Seasonal variations</subject><subject>Thermal stability</subject><issn>0029-8549</issn><issn>1432-1939</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU1rXCEUhqW00GnaP9DVhay6cOLX9epyCM0HBAJNuhb16sT0Xp2oEzL_Pk6nEAZCcSF6nvcc3vMC8B2jJUZoOCsIMUYgIhiiHtEe4g9ggRklEEsqP4IFQkRC0TP5GXwp5REhzHDfL8CfixAdLFZPrnvWOegaUuxC7OZgc3rQJlRdO5viGPaV0kp-2rpoXek2D7sS0pTWu07HsZtd1SZNocx7vY7dKladbQ22vYuz9Sv45PVU3Ld_9wn4ffHz_vwK3txeXp-vbqBlcqjQc8PdyLVBgjhvrHBIMi1Gz0fmjOW250Ro43s6EEMZN8J6O_JRSI-woJqegNND301OT1tXqnpM2xzbSEV60boOWLI3at28q2Yr1aztHIpVKz6IgQlJh0Yt36HaGV3bUIrOh_Z_JPhxJGhMdS91rbelqOu7X8csObBt1aVk59Umh1nnncJI7XNVh1xVy1X9zVXhJqIHUWlwXLv85u4_qld6K6Yk</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Spacht, Drew E.</creator><creator>Gantz, J. D.</creator><creator>Devlin, Jack J.</creator><creator>McCabe, Eleanor A.</creator><creator>Lee, Richard E.</creator><creator>Denlinger, David L.</creator><creator>Teets, Nicholas M.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7SN</scope><scope>7SS</scope><scope>7T7</scope><scope>7TN</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>H95</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.G</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><orcidid>https://orcid.org/0000-0002-3651-114X</orcidid></search><sort><creationdate>20211001</creationdate><title>Fine-scale variation in microhabitat conditions influences physiology and metabolism in an Antarctic insect</title><author>Spacht, Drew E. ; Gantz, J. D. ; Devlin, Jack J. ; McCabe, Eleanor A. ; Lee, Richard E. ; Denlinger, David L. ; Teets, Nicholas M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c497t-f6b6ed6ab082efbc8e094a8df6d4ebc6c5628abf5372b346b8cfcd6d89f0183a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aquatic plants</topic><topic>Biochemical composition</topic><topic>Biomedical and Life Sciences</topic><topic>Body composition</topic><topic>Carbohydrates</topic><topic>Composition</topic><topic>Ecological distribution</topic><topic>Ecology</topic><topic>Ecosystems</topic><topic>Environmental changes</topic><topic>Freezing</topic><topic>Growth rate</topic><topic>Habitats</topic><topic>Hydrology/Water Resources</topic><topic>Insects</topic><topic>Larvae</topic><topic>Life Sciences</topic><topic>Lipids</topic><topic>Metabolism</topic><topic>Microenvironments</topic><topic>Microhabitat</topic><topic>Microhabitats</topic><topic>Nutrient content</topic><topic>Ontogeny</topic><topic>Phenology</topic><topic>Physiological aspects</topic><topic>Physiological Ecology–Original Research</topic><topic>Physiology</topic><topic>Plant Sciences</topic><topic>Populations</topic><topic>Properties</topic><topic>Seasonal variation</topic><topic>Seasonal variations</topic><topic>Thermal stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Spacht, Drew E.</creatorcontrib><creatorcontrib>Gantz, J. D.</creatorcontrib><creatorcontrib>Devlin, Jack J.</creatorcontrib><creatorcontrib>McCabe, Eleanor A.</creatorcontrib><creatorcontrib>Lee, Richard E.</creatorcontrib><creatorcontrib>Denlinger, David L.</creatorcontrib><creatorcontrib>Teets, Nicholas M.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Oceanic Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><jtitle>Oecologia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Spacht, Drew E.</au><au>Gantz, J. D.</au><au>Devlin, Jack J.</au><au>McCabe, Eleanor A.</au><au>Lee, Richard E.</au><au>Denlinger, David L.</au><au>Teets, Nicholas M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fine-scale variation in microhabitat conditions influences physiology and metabolism in an Antarctic insect</atitle><jtitle>Oecologia</jtitle><stitle>Oecologia</stitle><date>2021-10-01</date><risdate>2021</risdate><volume>197</volume><issue>2</issue><spage>373</spage><epage>385</epage><pages>373-385</pages><issn>0029-8549</issn><eissn>1432-1939</eissn><abstract>Microhabitats with distinct biotic and abiotic properties exist within landscapes, and this microhabitat variation can have dramatic impacts on the phenology and physiology of the organisms occupying them. The Antarctic midge Belgica antarctica inhabits diverse microhabitats along the Western Antarctic Peninsula that vary in macrophyte composition, hygric qualities, nutrient input, and thermal patterns. Here, we compare seasonal physiological changes in five populations of B. antarctica living in close proximity but in different microhabitats in the vicinity of Palmer Station, Antarctica. Thermal regimes among our sample locations differed in both mean temperature and thermal stability. Between the warmest and coldest sites, seasonal mean temperatures differed by 2.6˚C and degree day accumulations above freezing differed by a factor of 1.7. Larval metabolic and growth rates varied among the sites, and adult emergence occurred at different times. Distinct microhabitats also corresponded with differences in body composition, as lipid and carbohydrate content of larvae differed across sites. Further, seasonal changes in carbohydrate and protein content were dependent on site, indicating fine-scale variation in the biochemical composition of larvae as they prepare for winter. Together, these results demonstrate that variation in microhabitat properties influences the ontogeny, phenology, physiology, and biochemical makeup of midge populations living in close proximity. These results have implications for predicting responses of Antarctic ecosystems to environmental change.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00442-021-05035-1</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-3651-114X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0029-8549
ispartof Oecologia, 2021-10, Vol.197 (2), p.373-385
issn 0029-8549
1432-1939
language eng
recordid cdi_proquest_journals_2580827194
source SpringerLink Journals
subjects Aquatic plants
Biochemical composition
Biomedical and Life Sciences
Body composition
Carbohydrates
Composition
Ecological distribution
Ecology
Ecosystems
Environmental changes
Freezing
Growth rate
Habitats
Hydrology/Water Resources
Insects
Larvae
Life Sciences
Lipids
Metabolism
Microenvironments
Microhabitat
Microhabitats
Nutrient content
Ontogeny
Phenology
Physiological aspects
Physiological Ecology–Original Research
Physiology
Plant Sciences
Populations
Properties
Seasonal variation
Seasonal variations
Thermal stability
title Fine-scale variation in microhabitat conditions influences physiology and metabolism in an Antarctic insect
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T15%3A09%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fine-scale%20variation%20in%20microhabitat%20conditions%20influences%20physiology%20and%20metabolism%20in%20an%20Antarctic%20insect&rft.jtitle=Oecologia&rft.au=Spacht,%20Drew%20E.&rft.date=2021-10-01&rft.volume=197&rft.issue=2&rft.spage=373&rft.epage=385&rft.pages=373-385&rft.issn=0029-8549&rft.eissn=1432-1939&rft_id=info:doi/10.1007/s00442-021-05035-1&rft_dat=%3Cgale_proqu%3EA678748937%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2580827194&rft_id=info:pmid/&rft_galeid=A678748937&rfr_iscdi=true