High-order Corrected Trapezoidal Rules for Functions with Fractional Singularities

In this paper, we introduce and analyze arbitrarily high-order quadrature rules for evaluating the two-dimensional singular integrals of the forms \begin{align} I_{i,j} = \int_{\mathbb{R}^2}\phi(x)\frac{x_ix_j}{|x|^{2+\alpha}} \d x, \quad 0< \alpha < 2 \end{align} where \(i,j\in\{1,2\}\) and \...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-03
Hauptverfasser: Jiang, Senbao, Li, Xiaofan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Jiang, Senbao
Li, Xiaofan
description In this paper, we introduce and analyze arbitrarily high-order quadrature rules for evaluating the two-dimensional singular integrals of the forms \begin{align} I_{i,j} = \int_{\mathbb{R}^2}\phi(x)\frac{x_ix_j}{|x|^{2+\alpha}} \d x, \quad 0< \alpha < 2 \end{align} where \(i,j\in\{1,2\}\) and \(\phi\in C_c^N\) for \(N\geq 2\). This type of singular integrals and its quadrature rule appear in the numerical discretization of fractional Laplacian in non-local Fokker-Planck Equations in 2D. The quadrature rules are trapezoidal rules equipped with correction weights for points around singularity. We prove the order of convergence is \(2p+4-\alpha\), where \(p\in\mathbb{N}_{0}\) is associated with total number of correction weights. Although we work in 2D setting, we formulate definitions and theorems in \(n\in\mathbb{N}\) dimensions when appropriate for the sake of generality. We present numerical experiments to validate the order of convergence of the proposed modified quadrature rules.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2580810512</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2580810512</sourcerecordid><originalsourceid>FETCH-proquest_journals_25808105123</originalsourceid><addsrcrecordid>eNqNi9EKgjAUQEcQJOU_DHoW5mzluyQ-m-8y9KqT4ezejaCvT6IP6Olw4Jwdi2SWpUl-kfLAYqJZCCGvN6lUFrG6MuOUOOwBeeEQofPQ8wb1Cm9nem15HSwQHxzyMiydN24h_jJ-4iXqr27NwyxjsBqNN0Anth-0JYh_PLJzeW-KKlnRPQOQb2cXcNuolSoXeSpUKrP_qg8gXEAn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2580810512</pqid></control><display><type>article</type><title>High-order Corrected Trapezoidal Rules for Functions with Fractional Singularities</title><source>Freely Accessible Journals</source><creator>Jiang, Senbao ; Li, Xiaofan</creator><creatorcontrib>Jiang, Senbao ; Li, Xiaofan</creatorcontrib><description>In this paper, we introduce and analyze arbitrarily high-order quadrature rules for evaluating the two-dimensional singular integrals of the forms \begin{align} I_{i,j} = \int_{\mathbb{R}^2}\phi(x)\frac{x_ix_j}{|x|^{2+\alpha}} \d x, \quad 0&lt; \alpha &lt; 2 \end{align} where \(i,j\in\{1,2\}\) and \(\phi\in C_c^N\) for \(N\geq 2\). This type of singular integrals and its quadrature rule appear in the numerical discretization of fractional Laplacian in non-local Fokker-Planck Equations in 2D. The quadrature rules are trapezoidal rules equipped with correction weights for points around singularity. We prove the order of convergence is \(2p+4-\alpha\), where \(p\in\mathbb{N}_{0}\) is associated with total number of correction weights. Although we work in 2D setting, we formulate definitions and theorems in \(n\in\mathbb{N}\) dimensions when appropriate for the sake of generality. We present numerical experiments to validate the order of convergence of the proposed modified quadrature rules.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Fokker-Planck equation ; Integrals ; Quadratures ; Singularity (mathematics)</subject><ispartof>arXiv.org, 2022-03</ispartof><rights>2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Jiang, Senbao</creatorcontrib><creatorcontrib>Li, Xiaofan</creatorcontrib><title>High-order Corrected Trapezoidal Rules for Functions with Fractional Singularities</title><title>arXiv.org</title><description>In this paper, we introduce and analyze arbitrarily high-order quadrature rules for evaluating the two-dimensional singular integrals of the forms \begin{align} I_{i,j} = \int_{\mathbb{R}^2}\phi(x)\frac{x_ix_j}{|x|^{2+\alpha}} \d x, \quad 0&lt; \alpha &lt; 2 \end{align} where \(i,j\in\{1,2\}\) and \(\phi\in C_c^N\) for \(N\geq 2\). This type of singular integrals and its quadrature rule appear in the numerical discretization of fractional Laplacian in non-local Fokker-Planck Equations in 2D. The quadrature rules are trapezoidal rules equipped with correction weights for points around singularity. We prove the order of convergence is \(2p+4-\alpha\), where \(p\in\mathbb{N}_{0}\) is associated with total number of correction weights. Although we work in 2D setting, we formulate definitions and theorems in \(n\in\mathbb{N}\) dimensions when appropriate for the sake of generality. We present numerical experiments to validate the order of convergence of the proposed modified quadrature rules.</description><subject>Fokker-Planck equation</subject><subject>Integrals</subject><subject>Quadratures</subject><subject>Singularity (mathematics)</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNi9EKgjAUQEcQJOU_DHoW5mzluyQ-m-8y9KqT4ezejaCvT6IP6Olw4Jwdi2SWpUl-kfLAYqJZCCGvN6lUFrG6MuOUOOwBeeEQofPQ8wb1Cm9nem15HSwQHxzyMiydN24h_jJ-4iXqr27NwyxjsBqNN0Anth-0JYh_PLJzeW-KKlnRPQOQb2cXcNuolSoXeSpUKrP_qg8gXEAn</recordid><startdate>20220321</startdate><enddate>20220321</enddate><creator>Jiang, Senbao</creator><creator>Li, Xiaofan</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220321</creationdate><title>High-order Corrected Trapezoidal Rules for Functions with Fractional Singularities</title><author>Jiang, Senbao ; Li, Xiaofan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25808105123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Fokker-Planck equation</topic><topic>Integrals</topic><topic>Quadratures</topic><topic>Singularity (mathematics)</topic><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Senbao</creatorcontrib><creatorcontrib>Li, Xiaofan</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Senbao</au><au>Li, Xiaofan</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>High-order Corrected Trapezoidal Rules for Functions with Fractional Singularities</atitle><jtitle>arXiv.org</jtitle><date>2022-03-21</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>In this paper, we introduce and analyze arbitrarily high-order quadrature rules for evaluating the two-dimensional singular integrals of the forms \begin{align} I_{i,j} = \int_{\mathbb{R}^2}\phi(x)\frac{x_ix_j}{|x|^{2+\alpha}} \d x, \quad 0&lt; \alpha &lt; 2 \end{align} where \(i,j\in\{1,2\}\) and \(\phi\in C_c^N\) for \(N\geq 2\). This type of singular integrals and its quadrature rule appear in the numerical discretization of fractional Laplacian in non-local Fokker-Planck Equations in 2D. The quadrature rules are trapezoidal rules equipped with correction weights for points around singularity. We prove the order of convergence is \(2p+4-\alpha\), where \(p\in\mathbb{N}_{0}\) is associated with total number of correction weights. Although we work in 2D setting, we formulate definitions and theorems in \(n\in\mathbb{N}\) dimensions when appropriate for the sake of generality. We present numerical experiments to validate the order of convergence of the proposed modified quadrature rules.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-03
issn 2331-8422
language eng
recordid cdi_proquest_journals_2580810512
source Freely Accessible Journals
subjects Fokker-Planck equation
Integrals
Quadratures
Singularity (mathematics)
title High-order Corrected Trapezoidal Rules for Functions with Fractional Singularities
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T07%3A17%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=High-order%20Corrected%20Trapezoidal%20Rules%20for%20Functions%20with%20Fractional%20Singularities&rft.jtitle=arXiv.org&rft.au=Jiang,%20Senbao&rft.date=2022-03-21&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2580810512%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2580810512&rft_id=info:pmid/&rfr_iscdi=true